

Master thesis by Tim van Werkhoven (t.i.m.vanwerkhoven@xs4all.nl),
2007–2008 supervised by Prof. Dr. C.U. Keller.

Cover image: Earth as viewed from the NASA space shuttle Challenger during mission STS-
41B in 1984. The atmosphere causing distortion in wavefronts is clearly visible in this picture.
Credit: NASA, id: S84-27031.

t.i.m.vanwerkhoven@xs4all.nl

Abstract

Astronomical observations done from the ground are hampered in many ways
by the Earth’s atmosphere. Several techniques exist to remedy these problems,
one of which is adaptive optics. The control mechanism behind adaptive op-
tics has long been specialised hardware with little flexibility. This makes these
systems highly non-portable and difficult to modify. Generic computers are
now getting to a point where their performance is good enough to take over
from these specialised pieces of hardware.

FOAM, backwards for Modular Adaptive Optics Framework, is a piece of soft-
ware that aims to provide a platform which can be used on a wide variety of
adaptive optics systems. To achieve this, the setup is modular such that pieces
of code can be re-used easily. Furthermore, FOAM is open source and can be
used by anyone, it is well-documented such that collaboration is possible.

In its current state, FOAM provides a modest library of modules which allow
it to analyse and process Shack-Hartmann wavefront sensor output, and drive
wavefront correctors with this. Additionally, it provides modules to simulate
an adaptive optics system. The program has been implemented and tested on
the McMath-Pierce telescope and is able to provide real-time tip-tilt correction.

v

vi

Contents

1 Introduction 1

1.1 Seeing . 1

1.2 Correcting seeing . 3

1.3 Need for FOAM . 3

2 Quantifying seeing 5

2.1 Kolmogorov turbulence . 5

2.2 Wavefront distortion . 7

2.3 Wavefront decomposition . 9

2.4 Effect of seeing on image quality 11

3 Adaptive optics 13

3.1 Wavefront sensors . 14

3.2 Wavefront correctors . 15

3.3 System control . 16

3.4 System requirements . 19

3.5 Example: Mercury . 21

4 FOAM design 25

4.1 Requirements . 25

4.2 System components overview . 26

4.3 Architecture . 27

5 FOAM implementation 33

5.1 Simulations . 33

5.2 Availability . 36

5.3 Future extensions . 36

5.4 Conclusions . 37

vii

CONTENTS

6 Applications 39

6.1 FOAM at the McMath-Pierce telescope 39

A Nederlandse samenvatting 47

A.1 Atmosferische storingen . 47

A.2 De storing corrigeren . 48

A.3 Het controlesysteem . 49

A.4 FOAM . 49

B Brief FOAM manual 53

B.1 Prerequisites . 53

B.2 Obtaining FOAM . 54

B.3 Installation . 54

B.4 Running FOAM . 55

C FOAM skeleton 57

D FOAM summary 59

D.1 FOAM framework . 59

D.2 OpenGL display module . 63

D.3 Okotech deformable mirror module 64

D.4 Shack-Hartmann module . 64

D.5 Image I/O module . 65

D.6 Data logging module . 65

D.7 Simulation module . 66

D.8 DaqBoard/2000 module . 67

D.9 ITIFG module . 67

D.10 Calibration module . 68

viii

CONTENTS

ix

1st Chapter

INTRODUCTION

When observing the skies in visible light there are two principal methods
which can be used. The first is observing from the surface of the Earth; the
second entails sending a telescope-equipped satellite into space. Both have
their benefits and drawbacks.

Space-based observations are relatively expensive, since a telescope needs to
be sent into an orbit around our planet. On the other hand, once a telescope
is in orbit, it can observe celestial objects without any interference from the
Earth’s atmosphere, which greatly increases the quality of the images.

Ground-based observations on the other hand are cheaper to build, since a
trip to space is not necessary in this case. Another advantage is that bigger
telescopes can be built on the ground, since the size of satellites is limited by
the rockets and space shuttles used. There is however a major drawback to this
method, which is the interference of the Earth’s atmosphere.

1.1 SEEING

When looking at stars with the naked eye during a clear night, they seem to
twinkle: their intensity appears to vary slightly. This twinkling or scintillation
is not intrinsic to the stars themselves, but is caused by the atmosphere which
distorts the light in various ways. This effect is called seeing.

Seeing is image degradation caused by the fact that the atmosphere is not ho-
mogeneous, but consists of different pockets of air with varying temperature.
Since the index of refraction (n) is a function of temperature, this means that
light is refracted in the atmosphere, so that one line-of-sight does not have the
same optical path length as another. This path difference results in the rippling
of a flat wavefront after it passes through the atmosphere. Figure 1.1 schemat-
ically shows how this works.

This rippled wavefront results in different forms of image degradation. When
observing point sources, it is possible that the source is imaged more than once,
resulting in speckle patterns (Labeyrie, 1970). This can happen because light
following different paths through the atmosphere might form separate images

1

1. INTRODUCTION

plane wavefront

turbulent atmosphere

perturbed wavefront

Figure 1.1: A simple diagram showing the aspects involved with seeing. The plane
wavefront enters at the top, traverses through the inhomogeneous atmosphere, and
comes out rippled. The different shades in the turbulent atmosphere denote differences
in the index of refraction, n. A sample light ray has been drawn to show how the
refraction of these relate to the wavefront perturbation.

of the same object with varying intensity. On top of this, the various speck-
les may overlap and form interference patterns. Because the atmosphere’s in-
homogeneities change rapidly, this speckle pattern also varies with time. To
observe speckles, one therefore needs to use a short exposure time not to blur
them out.

If one uses a larger exposure time, the different patterns will overlap and cause
overall image degradation: the image becomes more fuzzy and the resolution
is degraded.

Another effect associated with seeing is that the speckles move around at ran-
dom. Because the light is refracted differently by the atmosphere as time pro-
gresses, the speckles can appear at a different location each time.

All the above holds for point sources, but also applies to extended sources
as the sun or planets. The effects are slightly more complicated there as the
individual speckles are not distinguishable anymore, but overlap with neigh-
bouring speckles. Instead, the surface of the object appears to shear, stretch
and warp from frame to frame. Again, if the exposure is long enough, this
deformation is averaged out and the result is an overall more blurry image.

Besides these distortions caused by the atmosphere there are also various other
problems one has to face. These include scintillation, light pollution, spectral
lines caused by the Earth’s atmosphere etc. These phenomena are not unim-
portant, but are not part of image correction and therefore will not be discussed
here.

2

1.2 CORRECTING SEEING

1.2 CORRECTING SEEING

A solution to the previously mentioned problem could be to take short expo-
sure images. Since this freezes the speckles, it prevents large distortions. Using
clever techniques (Labeyrie, 1970), the original image can be partially restored
from a burst of these images. This method is computationally expensive and
can only be done after the images are taken.

Another method to restore the images is adaptive optics. This technique con-
stantly analyses the distortion at high frequency (in the order of a few kilo-
hertz) and uses some correcting actuator, usually a deformable mirror, to cor-
rect the distorted wavefront in real time. The way this is done is that a sensor
looks at the distortion of the wavefront, and feeds back this information to the
mirror. This hopefully corrects the distortion, so that the original wavefront is
restored. Of course in practice, this correction is never perfect. The principle of
this method is shown in Fig. 1.2.

deformable mirror

perturbed wavefront corrected wavefront

Figure 1.2: A schematic depiction of the correction mechanism behind adaptive optics.
The incoming wavefront is disturbed by the atmosphere and the mirror is deformed in
such a way that the distortion is cancelled.

1.3 NEED FOR FOAM

Adaptive optics (AO) has been in use on numerous telescopes since the 1990’s
when this technique emerged. Because a few years ago, computers were too
slow to do real-time analysis and correction of the wavefront, such adaptive
optics systems used specialist hardware specifically designed for this task. This
made them highly non-portable, as everything was hardwired. Any modifica-
tion to the setup required a large amount of work. Also, these systems were
expensive to build, since designing and programming such hardware requires
a lot of resources. Demand for a universal AO system is therefore high.

Since computers are much faster now and can easily perform the previously
mentioned tasks required in real-time, the road is paved for open and univer-
sal AO software based on general purpose machines. Several attempts have al-
ready been made in the past, for example on the McMath-Pierce solar telescope
(Ammons and Keller, 2002; Keller et al., 2003), but although these systems use
generic x86 architecture machines, they are usually built in a monolithic fash-
ion and have their drivers entangled in the rest of the program. This therefore

3

1. INTRODUCTION

hampers reusability of the system.

The goal of this research is to provide an adaptive optics software implemen-
tation that is open, modular and scalable and is intended to be (re-)used over
a wide variety of platforms and systems. This thesis presents the results of
this research: FOAM, a piece of software aiming to provide such an imple-
mentation. The structure of this writing is as follows: Chapter 2 provides a
theoretical background on seeing caused by a turbulent atmosphere. Chap-
ter 3 discusses adaptive optics systems in general and explores some of the
problems and caveats associated with this technique. Chapter 4 is devoted to
the design of FOAM, while Chapter 5 treats a simulation implementation of
FOAM and evaluating it by placing this research in a broader context. Chap-
ter 6 provides some initial results obtained with the software on the McMath-
Pierce telescope.

4

2nd Chapter

QUANTIFYING SEEING

The index of refraction (n) of air is not constant throughout the atmosphere.
The reason for this is the temperature and pressure dependence of n. Since the
atmosphere is not homogeneous, the temperature and pressure vary through-
out the atmosphere, and thus also the index of refraction.

The cause for the inhomogeneity of the atmosphere are due to the weather,
causing temperature- and pressure gradients. Specifically, things like wind
shear, differential heating of the atmosphere, turbulence caused by wind pass-
ing along mountains, etc. give rise to these gradients. Because these phenom-
ena change with time, the inhomogeneities do not only vary spatially, but also
temporally.

When the light from a celestial object arrives at the earth just above the atmo-
sphere, it can be considered a plane wave, meaning that the loci of equal phase
lie on a plane. As this wavefront encounters the turbulent atmosphere, it is
perturbed and becomes rippled. The rippling causes degradation in the qual-
ity of the image. This effect is called ‘seeing’. To correct this distortion with
adaptive optics, we first need to characterise these phenomena.

In this chapter I explain the nature of this distortion, starting with a brief anal-
ysis of the atmospheric turbulence, followed by the effect it has on the light
passing through the atmosphere, and concluding with some requirements for
adaptive optics systems. Details on the analysis can be found in both Tyson
and Frazier (2004) and Roddier (2004).

2.1 KOLMOGOROV TURBULENCE

Kolmogorov (1941) proposed a hydrodynamical model for turbulence by as-
suming energy is inserted at low frequencies on large scales, characterised by
an ‘outer scale length’ L0. This energy is then transported to smaller scales in
a cascading way, where the homogeneous clouds break up in smaller parts. Fi-
nally when this energy is transported to small enough scales, it is converted to
heat by dissipation. This small scale is characterised by an ‘inner scale length’
l0. Although originally not intended for the modelling of atmospheric turbu-

5

2. QUANTIFYING SEEING

lence, Dayton et al. (1992) found this model applicable to our atmosphere most
of the time. In the rest of this chapter, I assume this model to be valid. Typical
values for l0 range from a few millimetre to a few centimetre, while the value
of L0 is less certain and is believed to be several tens of meters.

When studying the wavefront perturbation caused by the variation of n
throughout the atmosphere, the absolute value of n is of little importance, since
it is the variation in n that causes the perturbation. The Kolmogorov model
states that

Dn(ρ) = 〈|n(r)− n(r + ρ)|2〉 = C2
n(z)ρ2/3, (2.1)

with ρ the distance between two points r1 and r2 and ρ = |ρ|. This relation
holds as long as ρ ranges from l0 to L0 and is called the index structure func-
tion. All other important quantities in atmospheric turbulence scale with the
same two-thirds power law. In Eq. (2.1), C2

n(z) is the so-called refractive index
structure constant, and mainly varies with height.

C2
n(z) characterises the turbulence in the atmosphere and is a measure for the

variation of n. The total distortion of a wavefront at ground level is a function
of the integral of this quantity along the line of sight. Typical values lie around
1015 m−2/3 (Tyson and Frazier, 2004, pp. 10), and there are several different
models describing this quantity. Two of these are plotted in Fig. 2.1.

 0.1

 1

 1e-21 1e-20 1e-19 1e-18 1e-17 1e-16 1e-15 1e-14 1e-13

Cn
2 [m-2/3]

SLC-Night model
H-V 5/7 model

 5

 10

 15

 20

 25

 30

H
ei

g
h

t
[k

m
]

Figure 2.1: The C2
n(z) profile for two different models. The SLC-Night model is a strat-

ified version, while the H-V 5/7 model is more continuous. This graph illustrates the
general shape and variation in such profiles.

Besides the spatial variance of n, the temporal variance is just as important for
adaptive optics systems. Given Eq. (2.1), this can be derived assuming that
variations in n live longer than the time it takes for such in inhomogeneities to
cross over a telescope driven by wind, so that

n(r, t+ τ) = n(r − vτ, t), (2.2)

with v the wind speed. Continuing this reasoning, we find a temporal variance

6

2.2 WAVEFRONT DISTORTION

for n of

Dn(ρ) = 〈|n(r, t)− n(r, t+ τ)|2〉 (2.3)

= 〈|n(r, t)− n(r − vτ, t)|2〉
= C2

n(z)|vτ |2/3,

and conclude that the temporal variance in n can be found by replacing ρwith
|vτ | in Eq. (2.1).

2.2 WAVEFRONT DISTORTION

Now that we have established the temporal and spatial variation of the index
of refraction in a turbulent atmosphere following a Kolmogorov spectrum, we
can investigate its effect on the wavefront perturbation at the telescope. Recall
that the distortion is caused by varying optical path lengths throughout the
atmosphere due to the inhomogeneity of n. Consider the optical path length
given by

δ =
∫
n(z) dz, (2.4)

integrating n along the line of sight. Although n is a function of temperature
and pressure, it is more or less wavelength independent over the relevant range
of the spectrum (visible and near infrared). The optical path length is therefore
also wavelength independent. The phase ϕ of the wavefront however does
depend on the wavelength:

ϕ = k

∫
n(z) dz, (2.5)

with k the wave number, 2π/λ.

Note that although the optical path length is millimetrelength independent,
the more important phase difference is not. If the path length of radio waves
are offset by a few millimeter, the wave is still plane because of the enormous
wavelength of radio waves. If the same distortion is applied to visible light
however, a few millimetres equals thousands of wavelengths, hence the wave
can no longer be considered plane, and the phase will vary randomly over the
telescope aperture.

However, when correcting this distortion, it is the difference in path-length that
is corrected. This means that the same correction can be applied to all wave-
lengths simultaneously, because of the wavelength independence of Eq. (2.4).
If some part of the wavefront is offset by a distance ∆x with respect to another
part, a correction to this offset works for all wavelengths.

As we are not interested in absolute phases, we again look at the variation of
the phase in a plane at the Earth’s surface using the structure function. x and
ξ are 2-d vector in this plane

Dϕ(ξ) = 〈|ϕ(x)− ϕ(x+ ξ)|2〉. (2.6)

7

2. QUANTIFYING SEEING

Using Eq. (2.5), we can find an expression forDϕ in terms of C2
n(z) which leads

to

Dϕ(ξ) = 2.91 k2

∫
C2

n(z) dz ξ5/3. (2.7)

Since C2
n(z) is only dependent on height, the above integral along the line of

sight can be rewritten to an integral going straight up:

Dϕ(ξ) = 2.91 k2 sec ζ
∫
C2

n(h) dh ξ5/3, (2.8)

with ζ the angle between the line-of-sight and zenith. Usually, the above ex-
pression is further rewritten as

Dϕ(ξ) = 6.88 (ξ/r0)5/3, (2.9)

with

r0 =
(

0.423 k2 sec ζ
∫
C2

n(h) dh
)3/5

, (2.10)

the Fried parameter (Fried, 1965). The Fried parameter is a useful quantity for
characterising the seeing quality, as will become clear in the next section.

Another quantity frequently used in describing atmospheric turbulence is the
isoplanatic angle. This quantity characterises an angle across the sky for which
the seeing conditions can be considered similar, and is frequently used to in-
dicate the maximum field of view for which disturbance is corrected. Consid-
ering a turbulent atmospheric layer at a distance of h/ cos(ζ), we characterise
the mean square error in the wavefront by replacing ξ by θ h sec(ζ) in Eq. (2.9).
While this would be correct for a single turbulent layer, in reality there are
several of such layers, so that h should be replaced by a weighed average h̄,
resulting in

σ2
aniso = 6.88 (θ h̄ sec(ζ)/r0)5/3. (2.11)

Equating this anisoplanicity rms error to 1 radian, we find that the isoplanatic
angle is given by

θ0 = 0.314
r0

sec(ζ) h̄
, (2.12)

so that the isoplanatic angle has the same wavelength dependence as r0, and
that it is much more dependent on the zenith angle ζ.

As for the temporal behaviour of seeing, recall that Eq. (2.3) gave the temporal
variance of the index structure function. Using this expression, and performing
the identical analysis as done previously, the variance of the phase difference
between time t and t+ τ is found to be

Dϕ(ξ) = 6.88 (v̄ τ/r0)5/3, (2.13)

with v̄ the average wind speed along the line of sight. This quantity can be
used to calculate the mean square phase error if a correction to the wavefront
is applied after a certain delay τ , i.e.

σ2
time = 6.88 (v̄ τ/r0)5/3. (2.14)

8

2.3 WAVEFRONT DECOMPOSITION

j Zernike mode j, Zj Aj (rad2) Optical aberration

1 1 1.0299 Piston
2 2 ρ sin(θ) 0.582 Tip/tilt
3 2 ρ cos(θ) 0.134 Tip/tilt
4
√

3 (2ρ2 − 1) 0.111 Defocus
5
√

6 (ρ2 sin(2θ)) 0.0880 Astigmatism
6
√

6 (ρ2 cos(2θ)) 0.0648 Astigmatism
7
√

8 (3ρ3 − 2ρ) sin(θ) 0.0587 Coma and Tilt
8
√

8 (3ρ3 − 2ρ) cos(θ) 0.0525 Coma and Tilt

Table 2.1: The first few Zernike polynomials. Aj is used as a constant to determine
the residual rms wavefront error after correcting j Zernike modes, see Eq. (2.18). The
optical aberration associated with mode j is listed alongside the wavefront error. Taken
from Noll (1976).

Allowing a maximum rms error of 1 radian, Eq. (2.14) can be rewritten to

τ0 = 0.314
r0

v̄
, (2.15)

so that τ0 gives a measure of the maximum time-delay allowed before apply-
ing a correction to the distorted wavefront. This delay is called the Greenwood
time delay, and the reciprocal value is called the Greenwood frequency, fG.
Typical values for this frequency are around several hundred Hertz in the vis-
ible.

2.3 WAVEFRONT DECOMPOSITION

Decomposing the wavefront can help to identify what kind of distortions we
are dealing with. One widely used example is the set of Zernike polynomials,
Zj(ρ, θ), which is an infinite series of orthogonal polynomials over a unit circle.
These are set up in such a way that the first few polynomials directly relate to
optical phenomena like tip-tilt, defocus, etc. The first eight of these are given
in Table 2.1 with the associated optical error. Such a wavefront decomposition
for a circular aperture with radius R is given by

ϕ(ρR, θ) =
∑

j

ajZj(ρ, θ), (2.16)

with aj some coefficient. For details on Zernike modes I refer the reader to the
literature (again, see Tyson and Frazier (2004) or Roddier (2004)).

Now consider that we correct exactly N Zernike modes of the wavefront dis-
tortion. Taking the first N Zernike modes gives us

ϕc(ρR, θ) =
N∑

j=1

ajZj(ρ, θ). (2.17)

9

2. QUANTIFYING SEEING

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.2: Visualisations of the first 8 Zernike modes. (a) piston, (b) and (c) tip-tilt, (d)
defocus, (e) and (f) astigmatism, (g) and (h) coma. See Table 2.1 for details.

If we apply such a correction to a distorted wavefront, and assuming Eq. (2.9)
holds, Fried (1965) and Noll (1976) found that the residual mean square phase
distortion of the wavefront is given by

σ2
ϕ,N =

∫
Aperture

〈|ϕ(ρR, θ)− ϕc(ρR, θ)|2〉 (2.18)

= Aj

(
D

r0

)5/3

,

with D the aperture diameter and r0 the Fried parameter from Eq. (2.10). The
first few values of Aj are listed in Table 2.1. Thus, decomposing the wavefront
helps us to predict the improvement gained by a certain optical correction. Noll
(1976) found that for N & 10 the residual phase error is given by

σ2
ϕ,N = 0.2944N

√
3/2

(
D

r0

)5/3

. (2.19)

Looking at the residual errors listed in Table 2.1, note that without correction,
the residual error is given by

σ2
ϕ,0 = Aj

(
D

r0

)5/3

(2.20)

= 1.0299
(
D

r0

)5/3

,

so that if we use a telescope aperture of size r0, the rms phase distortion is
about 1 radian.

Besides the Zernike expansion there are other methods to decompose the
wavefront error. One decomposition suitable for this is the Karhunen-Loève

10

2.4 EFFECT OF SEEING ON IMAGE QUALITY

expansion, which is similar to the Zernike decomposition in some respects, but
is optimised for a given turbulence and is numerical instead of analytical. In
practice, the Zernike expansion is used more often though, due to its analytical
nature.

2.4 EFFECT OF SEEING ON IMAGE QUALITY

Now that we have established some statistics on the wavefront error and the
phase variance, it is time to look at the influence this has on image quality.
Since science is done with images and not with wavefronts, it is interesting to
so see what effect the distortion has on the image quality.

Before we can analyse this at all, we need to define it first. A widely used
quantity for determining image quality is the so-called Strehl ratio, the ratio
between maximum intensity of a degraded image and the maximum intensity
of a diffraction limited image. For large errors, it is defined as

S ≈ exp
(
−σ2

ϕ

)
, (2.21)

with σ2
ϕ the rms wavefront error.

Recall that for a telescope with diameter D = r0 the rms wavefront error is
about 1 radian, it follows from Eq. (2.21) that the Strehl ratio is exp(−1) ≈ 0.37
in such a case. A rms wavefront phase variance of about 1 radian is consid-
ered a ‘good’ image, although this limit is somewhat arbitrary. The resolution
that can be achieved in such a case is about r0/λ. It can be shown that the
image quality quickly degrades further if the telescope diameter is increased
beyond r0 so that this will not result in a higher resolution. Without correcting
the wavefront error, r0 determines the maximum useful telescope diameter for
long exposure imaging.

From Table 2.1, note that the first Zernike mode is a constant wavefront offset
and thus does not influence the image quality. The second and third Zernike
mode are the tip- and tilt modes which only result in an image displacement
and not in overall image degradation if the exposure is shorter than τ0. If the ex-
posure is too long, the various displacements are stacked resulting in a blurry
image. Therefor, when using short exposures we can increase the telescope
diameter to (1/0.134)3/5 = 3.3 r0 before the rms wavefront error increases be-
yond 1 radian. This shows that using short exposure imaging theoretically can
be a simple solution to increase the image resolution by a factor 3.3.

Considering that r0 typically ranges from 5 – 15 cm in the visible, this still
strongly limits the maximum resolution obtained by telescopes. To improve
this, we either need space-based telescopes or some method to correct the at-
mospheric distortion. One method to correct such distortions is adaptive op-
tics, which is discussed in the next chapter.

11

2. QUANTIFYING SEEING

12

3rd Chapter

ADAPTIVE OPTICS

Adaptive optics is a mechanism to correct distorted wavefronts in real-time.
The incoming distorted wavefront is fed to a wavefront sensor (WFS) which
can detect the aberrations. This information is sent to a wavefront corrector
(WFC) which is an actuator that corrects the distortion. The separate compo-
nents are linked together using some control hardware, which can be anything
from a piece of special purpose hardware to a general purpose PC. Such a sys-
tem is depicted in Fig. 3.1. This chapter will deal with the several aspects of an
adaptive optics system one by one, beginning with the wavefront sensor in the
next section.

perturbed wavefront

DM

science

beam splitter

control
hardware

wavefront sensor

cam
era

Figure 3.1: A typical adaptive optics system using one deformable mirror (DM) as
wavefront corrector and one Shack-Hartmann wavefront sensor to detect the distor-
tion. The control hardware takes input from the sensor and feeds this to the corrector,
forming a closed-feedback loop.

13

3. ADAPTIVE OPTICS

3.1 WAVEFRONT SENSORS

Before correcting anything at all, the aberration to be corrected must be mea-
sured, which is done by so-called wavefront sensors. When imaging a wave-
front, we measure the absolute amplitude squared of the electromagnetic
waves. To detect the deformation, we need to know the phase, which at this
time cannot be measured directly; there are no wavefront-phase sensors for vis-
ible light. Instead, the deformation is measured indirectly, which can be done
in various ways.

The most commonly used wavefront sensor is the Shack-Hartmann (SH) wave-
front sensor (Lane and Tallon, 1992), which consists of an array of small lenses
(or subapertures) which image different parts of the wavefront. These lenslets
are typically smaller than a millimetre and typical arrays used are 8 × 8 and 16
× 16 arrays. The concept behind this sensor is that the lenslets image only a
part of the wavefront, such that these only sense the local deformation. The lo-
cal slope of the wavefront translates in a displacement of the image the lenslets
form, such that this displacement is a direct measure for the local deformation.
Using an array of these lenslets, the slope can be determined at an arbitrary
number of points, such that the shape of the wavefront can be reconstructed.
The principle of the Shack-Hartmann sensor is shown in Fig. 3.2.

lenslet array

perturbed wavefront

image plane
Δx

Figure 3.2: The principle of a Shack-Hartmann wavefront sensor. The wavefront arrives
at the top, after it has been perturbed by for example the atmosphere. A 1 dimensional
cut through the lenslet array is drawn, showing 4 individual lenslets. Each lenslet im-
ages a different part of the wavefront, thus sensing only the local slope. The slopes are
accentuated by dashed lines, and the image displacement is annotated at the leftmost
lenslet. If the wavefront would be plane, the image would be at the centre, instead it
is offset by ∆x. This direct relation between image displacement and wavefront slope
allows reconstruction of the perturbation.

There are various ways to measure the position of the various images formed
by the lenslet array. One method is calculating the centre of gravity (CoG) for
each subaperture. This method works best on (more or less) circular symmetric
sources (stars, planets) with a clear maximum, asymmetric objects that change
over time like the solar surface are less suitable for this method. Another ad-
vantage of this method is that it is relatively insensitive to intensity variation

14

3.2 WAVEFRONT CORRECTORS

caused by scintillation or clouds.

Another method is using correlation between two images. First a reference im-
age is taken, again by sending a flat wavefront through the AO system and
recording this. After this calibration, subsequent subaperture images are cross
correlated with the reference images at various displacements, and the dis-
placement yielding the highest cross correlation is used as the subaperture off-
set. This method is more prone to intensity fluctuations as the reference image
is static and is not automatically corrected for intensity variations.

3.2 WAVEFRONT CORRECTORS

After the wavefront distortion is measured by some sensor like the one dis-
cussed previously, it must be corrected. One type of wavefront corrector is a
deformable mirror (DM), which typically has tens to hundreds of individual
actuators deforming the mirror surface, so that it can correct many Zernike
modes. Another corrector is a tip-tilt mirror, which is a flat mirror only capable
of correcting the tip- and tilt modes.

3.2.1 TIP-TILT MIRROR

A tip-tilt mirror is usually the first corrector the distorted wavefront encoun-
ters. Tip-tilt mirrors are static mirrors which can rotate on two perpendicular
axes. Using piezoelectric actuators these can function at frequencies up to sev-
eral kilohertz. The advantage of correcting only tip- and tilt-modes is that such
a mirror can correct these modes effectively. Since most of the distortion is lo-
cated in these modes (see Table 2.1), the mirror needs to move quite a distance,
i.e. it has to have a large stroke. By correcting the first two modes with this
mirror, a high-order corrector can focus on the remaining aberrations.

3.2.2 DEFORMABLE MIRROR

There are various types of deformable mirrors, which have gained complex-
ity over the years. The early deformable mirrors consisted of mirror segments
with piston-like actuators behind them, which would move the segments up
and down. By adding two extra pistons to each mirror segment, these were
able to correct tip- and tilt modes as well. Later continuous deformable mir-
rors were developed replacing their segmented predecessors, and these are still
used today.

Deformable mirrors typically have less stroke than tip-tilt mirrors, and focus
on correcting the higher order modes. If the low order modes also have to
be corrected by this mirror, there is only little stroke left for the higher order
modes, reducing the effectivity of the AO system.

15

3. ADAPTIVE OPTICS

3.3 SYSTEM CONTROL

Once the wavefront sensor delivers some input, this must be translated into
actuator commands by some controlling unit. An example implementation of
such a control mechanism using a Shack-Hartmann WFS with a DM as correc-
tor is explained here.

perturbed wavefront

DM

science

BS control
hardware

wavefront sensor

cam
era

FW1

TT
FW2

Figure 3.3: A more detailed description of an AO setup with one wavefront sensor, one
tip-tilt mirror (TT) and one deformable mirror (DM). This scheme also shows the two
filter wheels (FW) that can be used to place a pinhole in the beam. The beam splitter
(BM) distributes the incoming light between the WFS and the science instruments. The
dashed lines indicate the connection between the various sensors and actuators in the
system. The dotted lines denote the beam of light, showing that the two filter wheels are
located in the image plane and that the mirrors are located in the pupil plane, receiving
a collimated beam. The lenslet array is also placed in the pupil plane, chopping up the
aperture in several subapertures. The lenses (re-)imaging the beam are not drawn here.

3.3.1 WAVEFRONT SENSOR CALIBRATION

Before using the WFS output to drive the actuators, this sensor must first be
calibrated. To do this, a plane wave is sent into the WFS which acts as a ref-
erence wavefront. This can be done by placing a pinhole just before the WFS,
for example by using a filter wheel (FW2 in Fig. 3.3). Such a pinhole generates
a spherical wavefront which is converted into a flat wavefront after it passes
a lens just before the wavefront sensor. The offsets measured using this flat
reference wavefront with the WFS do not have to be zero, because of small
alignment errors in the setup itself. These (non-zero) reference offsets thus de-
fine a flat wavefront.

The reference coordinates measured this way guarantee that a flat wavefront is
also sent down into the science instruments. During normal operations, FW2 in
Fig. 3.3 is open, sending anything that comes from the tip-tilt- and deformable
mirror directly to the wavefront sensor. If the WFS therefore receives a flat
wavefront, defined by the calibration discussed above, the same wavefront is

16

3.3 SYSTEM CONTROL

sent to the science instruments. A positive side-effect of this approach is that
any optical aberration in front of the wavefront sensor is also corrected, because
the sensor does not distinguish between different sources of perturbation.

flat wavefront wavefront sensor

cam
era

Figure 3.4: Calibration of the wavefront sensor is achieved by sending in a plane wave
directly into the WFS, by placing a pinhole just before the sensor (FW2 in Fig. 3.3). The
sensor output measured this way defines a flat wavefront, and is used as a reference
during AO operations.

3.3.2 WAVEFRONT CORRECTOR CALIBRATION

After the offsets for a flat wavefront are defined, the influence of the wave-
front correctors must be measured. This is necessary because, if we wish to
negate the wavefront distortion measured, we must know the response of the
deformable mirror. Because these are not known a priori and can vary due
to slight changes (alignment, temperature), calibration is used to measure the
so-called influence matrix. This is done by placing a pinhole at the telescope
focus (with FW1 in Fig. 3.3) before the wavefront correctors so that a plane
wave is sent through the complete AO system. This guarantees that we are
indeed measuring the influence of the DM, and not an intrinsic change in the
wavefront entering the AO system.

Once plane waves are running through the system, the actuators on the DM
are driven back and forth one by one. While driving these actuators, the differ-
ence between the offsets measured by the WFS for the two actuator positions
are stored. This gives the influence for each actuator on the offsets measured
in each subaperture. Once this is done for each actuator, the result is a matrix
called the influence matrix, which is n×m big, with n the number of measure-
ments andm the number of actuators. The number of measurements n is twice
the number of subapertures in the SH WFS, since each subaperture gives an x-
and y-offset.

Now that the influence matrix is known, the offsets measured with the SH WFS
can be calculated given a certain vector of actuator voltages:

p = Dv, (3.1)

where v is an m-element actuator voltage vector, D is the influence matrix and
p is the resulting measurement vector holding n wavefront sensor measure-
ments. Since for an AO system p is the input from the WFS and v is the output

17

3. ADAPTIVE OPTICS

flat wavefront

DM

wavefront sensor

cam
era

wavefront
perturbed by DM

(a)

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

M
ea

su
re

d
 o

ff
se

t

Actuator voltage

(b)

Figure 3.5: (a) Calibration of the wavefront corrector, such as a deformable mirror in this
example, is achieved by sending a known (flat) wavefront through the adaptive optics
system and measuring the wavefront sensor output as function of shape of the mirror.
Two different shapes are drawn for the deformable mirror, with the relaxed position
given by a dashed line. The shape of the mirror is defined by the voltage applied to
the actuators. (b) Once the offsets for each subaperture are measured with one actuator
moving between the two extreme positions, the relation between the actuator input
and subaperture shift is found, which results in a graph such as the one here for each
actuator-subaperture pair.

that should be sent to the DM, we need to invert D. Since this matrix is typi-
cally rectangular, with n > m, i.e. we have more measurements than variables,
this is a typical singular value decomposition problem. For an insightful dis-
cussion on singular value decompositions, I refer to Numerical Recipes (Press
et al., 1992, Ch. 2.6). After singular value decomposing D, the result is given
by

v = D∗ p, (3.2)

such that given the measurement vector p, we can calculate the control signals
(voltages) that need to be sent to the DM in order to correct the wavefront.

3.3.3 CLOSING THE FEEDBACK LOOP

Once the system is calibrated, the feedback loop can be closed. In such a case,
the image from the wavefront sensor camera is read out, and the offsets are
determined and compared with the reference offsets for a plane wavefront. The
offsets that remain are then multiplied with D∗, resulting in control voltages
for the wavefront corrector. If the system is successfully running in closed
feedback loop, it is said to be locked.

Note that the wavefront sensor only senses the residual wavefront error, i.e.
a correction has already been applied by the correcting actuators. To account
for this, the voltages calculated using Eq. (3.2) must be added to the current
voltages applied to the actuators.

18

3.4 SYSTEM REQUIREMENTS

3.4 SYSTEM REQUIREMENTS

To successfully correct distorted wavefronts, there are several things to keep
in mind. As already discussed in Chapter 2, the strength of the seeing is a
function of wavelength. The spatial and temporal requirements of an adaptive
optics systems are thus dependent on what one aims to observe. Recall two
important quantities, the Fried parameter r0 and the Greenwood time delay τ0.
These two quantities are again plotted in Fig. 3.6 for easy reference.

 0

 50

 100

 150

 200

 250

 200 300 400 500 600 700 800 900 1000
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

G
re

en
w

o
o

d
 f

re
q

u
en

cy
 [

H
z]

F
ri

ed
 p

ar
am

et
er

 [
cm

]

Wavelength [nm]

fG: H-V 5/7

fG: SLC-Night

r0: H-V 5/7

r0: SLC-Night

Figure 3.6: This graph shows the relation between r0 and fG versus wavelength.

3.4.1 SPATIAL REQUIREMENTS

To get an idea of how many actuators we need to correct, consider a small
mirror with radius d, which is able to correct piston, tip- and tilt modes. To do
so, this mirror needs 3 degrees of freedom, i.e. 3 actuators. If we fully correct
these modes, Table 2.1 shows that the wavefront error scales as

σ2
ϕ,3 = 0.134

(
d

r0

)5/3

. (3.3)

Placing several of these mirrors together to make a bigger mirror of radius
D requires about D2/d2 of these small mirrors, thus requiring N = 3× (D/d)2

actuators in total. Putting this all together and combining it with Eq. (3.3) gives

σ2
ϕ,3 = 0.335

(
D

r0

)5/3

N−5/6, (3.4)

which is also given in Roddier (2004, pp. 13).

This correction method is called a zonal correction, as the correction is ap-
plied for each part of the wavefront separately (i.e. the big mirror is not much
more than several smaller mirrors working individually). Another possibility
is the so-called modal correction, where the mirror corrects several modes in

19

3. ADAPTIVE OPTICS

the wavefront at once, such that the different parts of the mirror do not work
independently. The modes used in this case are usually specific system modes
that a mirror has.

According to Roddier (2004, pp. 31), modal correction is slightly more effec-
tive than zonal correction. This makes sense as modal correction uses the de-
formable mirror as a whole, instead of acting like several independent mirrors.
The wavefront error when correcting Zernike modes decreases as N−0.87 for
N & 10, as opposed to N−5/6 = N−0.83 for zonal correction. When using a
Karhuhen-Loève modes expansion instead of Zernike modes, this correction is
again slightly more effective.

As for the spatial requirement for an adaptive optics system, keeping the rms
wavefront error around 1 radian gives the following requirement for the num-
ber of independent actuators to be used:

N = 0.269
(
D

r0

)2

(3.5)

∝ D2 λ−12/5,

which means that bigger telescopes and shorter wavelengths are much more
difficult to correct. For example when comparing adaptive optics in the in-
frared (1.5 micron) with visible (0.5 micron), correcting at both wavelengths
with the same accuracy would require about 10 times as many actuators in the
visible as in the infrared. When designing an AO system, one has to keep these
requirements in mind.

3.4.2 TEMPORAL REQUIREMENTS

Besides spatial requirements, there are also temporal restrictions to an AO sys-
tem. The Greenwood frequency fG given by the reciprocal of Eq. (2.15) is a
measure for the rate of change of the turbulence, which means that in practice
an adaptive optics system should run at least a few times faster than this fre-
quency to effectively correct the wavefront. From Fig. 3.6 we can see that this
means that AO systems need to run at rates of up to 500–1000 Hz. Again, there
is a strong wavelength dependence. While the Greenwood frequency is in the
order of 25 Hz for infrared, it goes up to 100 Hz for the visible.

This requires that the wavefront correctors must be able to run at these speeds,
while this also means that the wavefront sensor, i.e. the camera, must be able
to deliver 500–1000 frames per second. Consequently, this data stream must be
processed to analyse the sensor output and generate actuator voltages. Since
this data stream is in the order of tens to hundreds of megabytes per second,
this puts a strain on the controller. Considering the image must be dark- and
flatfielded as well in certain cases, adaptive optics can be computationally ex-
pensive.

The solution to this problem has for a long time been to use dedicated hard-
ware which was tailor made for controlling adaptive optics. The hardware
used for this were FPGA’s, or Field Programmable Gate Arrays, which contain
programmable logic such that the algorithms used during adaptive optics can

20

3.5 EXAMPLE: MERCURY

be directly implemented in the hardware itself. This type of systems is rela-
tively fast, but unfortunately also difficult to build or customise.

Nowadays, general purpose computers are beginning to become fast enough
to run these algorithms instead. FOAM attempts to fill the gap of adaptive
optics controlling software running on general purpose machines, which is the
topic of the next chapter.

3.5 EXAMPLE: MERCURY

As a case-study to give insight on how adaptive optics help observations in
practice, this section provides example observations of Mercury with and with-
out adaptive optics.

Since Mercury is the innermost planet in our solar system, it is always close to
the sun. This gives rise to some problems when observing this planet. Either it
is observed during the day, when seeing is generally bad due to surface heating
of the sun, or it is observed just after sunset through a large air mass. In both
cases, atmospheric seeing is especially problematic when observing Mercury.
On top of that, Mercury only subtends a few arcseconds across the sky, which is
not much more than the highest resolution obtained when observing without
adaptive optics.

The sodium distribution over the Mercury surface appears non-uniform and
changes with time. To better understand the Mercury exosphere and exo-
spheres in general, sodium is a suitable candidate for study because of its
strong resonance. Furthermore, since the sodium interacts with the solar wind,
studying the distribution of this compound provides insight in the interaction
of the wind with the Mercury surface and exosphere. The following is a sum-
marised version of Potter and Morgan (1997) and Potter et al. (2006a,b), with
focus on adaptive optics.

3.5.1 BOWEN IMAGE SLICER

To study the spatial distribution of sodium over the Mercury surface, a Bowen
image slicer was used. This device takes a two-dimensional image and slices
it up in a complete set of several rectangles and uses prisms to re-arrange the
slices such that they line up top to bottom. This elongated image is then passed
to a spectrograph, which disentangles the light into spectra. The result is thus
a two-dimensional image with a spectrum for each pixel. The procedure is
depicted in Fig. 3.7, and is also discussed in Potter and Morgan (1990), footnote
13.

3.5.2 ADAPTIVE OPTICS

Since Mercury observations are observationally challenging, adaptive optics
can help out in correcting some of the distortions caused by the atmosphere.
This was done in May of 2008 using the McMath-Pierce solar telescope at Kitt
Peak, Arizona. Although this run did not yet use FOAM for driving the AO

21

3. ADAPTIVE OPTICS

2d spectraSpectra

4321

Sliced imageOriginal image

2

4

3

1

2

4

3

1

Slit

λ

Slice

Figure 3.7: The mechanism of a Bowen image slicer. A 2-dimensional spatial image is
fed to the slicer, which chops it up in a set of rectangular slices, as shown on the left.
These are then rearranged top-to-bottom and fed to a slit which disentangles the light
into spectra, shown in the two centre images. The result (on the right) is again a 2-
dimensional image with wavelength on the horizontal axis and position on the vertical.
By taking a certain spectral band in this image and again rearranging it back to the
original configuration, one can construct a spatial 2d image showing the intensity of that
spectral band. The resolution of the final image is limited in one direction by the amount
of slices produced, while in the other direction this is governed by the resolution of the
slit-CCD combination.

system, new hardware was used in this setup which required adaptations to
the old software in order to get it working. The experience gained during the
development of FOAM proved to be quite useful in this situation as it was
used in some preliminary tests on this new hardware. An adaptive optics setup
similar to the one used during this run is described in more detail in Keller et al.
(2003).

To illustrate the benefit from the use of adaptive optics, some results of two
different Mercury observation runs are presented in Fig. 3.8. One was done
without the use of any optical correction, while the other used full adaptive
optics with a tip-tilt- and deformable mirror. Although the two observations
were taking at different times, the seeing was approximately the same during
the two observations. Figure 3.8 shows that the effective seeing is much better
with the correction turned on, and as the image is concerned the non-uniform
distribution of sodium is much clearer in the right image. Thanks to adaptive
optics, this kind of research is possible in the first place.

22

3.5 EXAMPLE: MERCURY

(a)

(b)

Figure 3.8: Comparison of image quality of Mercury observations with and without
using adaptive optics. In both (a) and (b), the left image shows Mercury in integrated
light, while the right image shows the planet in a sodium line. Both images were ob-
tained through private correspondence with A. Potter, but the results of (a) have been
published in Potter et al. (2006a).

23

3. ADAPTIVE OPTICS

24

4th Chapter

FOAM DESIGN

FOAM is a reverse acronym for Modular Adaptive Optics Framework, and
tries to provide exactly that. In light of the relative absence of this type of
software, FOAM aims to fill this niche.

To this end, I designed FOAM with an open and portable adaptive optics (AO)
system in mind, based on general purpose computers using Unix-like oper-
ating systems. The architecture describes a general framework which should
apply to as many AO systems as possible, such that implementation of this ar-
chitecture is possible across a wide range of platforms. To achieve this goal, I
designed the interfaces between different components to be as general as possi-
ble, internally using generalised commands which are translated to hardware-
specific commands by separate software modules.

This chapter describes what the requirements for FOAM are and how this is
translated into an architecture.

4.1 REQUIREMENTS

Before designing the architecture of a program, the requirements for the system
must first be considered. This section contains a brief overview of what FOAM
must be capable of and thus what must be included in the architecture.

Portability The system should be portable across different Unix platforms.

Scalability The AO system should be scalable in the sense that it should run
efficiently on large machines (multi-core or -CPU machines).

Extensibility The system must easily be extensible, i.e. it must be easy to
add new wavefront sensors or -correctors, such as the case in a multi-
conjugate AO setup. Another example of this would be that the sys-
tem can be simulated and that different modes of operation can be tested
without hardware.

Usability It must be possible that the system is controlled by a user on the
same or a different computer than what the AO system runs on. Ad-

25

4. FOAM DESIGN

ditionally, it must be possible to automate this control such that other
software or hardware can also (partially) drive the AO system.

Public Because FOAM aims to be used in a collaborative and open environ-
ment, FOAM must be free of any licensing issues. The license of FOAM
should thus be an open source version, such that anyone can modify and
adapt the software to their liking.

In the conclusions at the end of next chapter I review this list and evaluate the
degree to which these requirements have been met.

4.2 SYSTEM COMPONENTS OVERVIEW

An AO system consists of different components that work together. Figure 4.1
shows how the components are connected, and a description of each compo-
nent is given below that. Each component can be something physical, but can
also be simulated by software.

Control Software

User (interface)

OBJ ATM TEL FW1 WFC SCIBS

WFS

FW2

Figure 4.1: The setup of a typical AO system. The arrows indicate the data-streams
(light, images, wavefronts), the circle-ended arrow denotes the control-stream from the
user to the software. Note that the logical connections from the control software to the
components are not drawn here yet.

Object (OBJ) The object is strictly speaking part of the system, although usu-
ally one has little to do with it. Only in the case of simulation does this
become important.

Atmosphere (ATM) Here the (synthesised) image is be distorted. This compo-
nent is usually of great influence since it is responsible for the distortion,
but under little control of the observer. During simulation this compo-
nent is again simulated by software.

Telescope (TEL) This is the telescope which takes care of gathering the light
and focussing it. During AO operations, the telescope is able to perform
the same function as the tip-tilt mirror, and must be included during long
runs to prevent large image drifting.

26

4.3 ARCHITECTURE

Filter wheel 1 (FW1) The first filter wheel is placed in the telescope focus in
front of the AO system and is used for calibration purposes. During nor-
mal operation, this filter wheel is open.

Wavefront corrector (WFC) This component will correct the wavefront dis-
torted by the atmosphere and optical components in front of it. There
can be multiple WFCs in one AO system, and usually there are at least
two: a tip-tilt- and a deformable mirror.

Beam splitter (BS) This passive component redirects some of the light to the
AO sensors and sends most of the light to the actual science instrumenta-
tion. This is essential because we need part of the light for AO, but most
of the light will be used for science.

Filter wheel 2 (FW2) This filter wheel placed behind the beam splitter is only
experienced by the AO sensors and is used for calibration purposes. This
filter wheel is also open during normal operation.

Wavefront sensor (WFS) The wavefront sensor measures the wavefront dis-
tortion. This can for example be a Shack-Hartmann wavefront sensor,
but again, this can also be something else. An imaging camera is strictly
speaking also a WFS, but one with only one subaperture.

Control Software This is the centre of the AO system as it uses the input from
a sensor to drive the other components. Additionally, the software must
take care of user interaction.

Science instrumentation (SCI) This single component encompasses all sci-
ence instrumentation behind the AO system. This component is of in-
terest because in simulation we might want to be able to simulate science
instruments as well.

The first two components are a bit unusual in the sense that during operation
they are not anywhere near the telescope, and are not under any control of
the observer. These are included for completeness however, since they play
a crucial role during simulation. The other components can either be real or
simulated. It is important to understand that only the whole AO system can be
simulated though, and that simulation of individual components is senseless.

4.3 ARCHITECTURE

Now that the components that are used in the AO system are defined, this sec-
tion presents the architecture of FOAM providing the requirements mentioned
before.

4.3.1 MODULAR SETUP

To achieve portable and extensible software, I kept the basic program in FOAM
to a minimum. This framework can then be extended by several modular

27

4. FOAM DESIGN

pieces of code (modules) which attach to hooks provided by the framework. A
bundle of the framework and some modules is linked together by a prime mod-
ule. This prime module also contains configuration on how to run the modules,
i.e. if a camera module is used, what is the resolution, if a deformable mirror
module is used, how many actuators do we use etc. Together, the framework,
the prime module and the software modules form one package which can do
all the work. This is depicted in Fig. 4.2.

Framework

Mod

ModMod

Mod

Mod Mod

Prime Module

Figure 4.2: The FOAM architecture, showing the framework at the top which only links
to the prime module, which in turn employs a number of modules to provide a func-
tional program. This whole setup is dubbed a ‘package’.

This FOAM framework can be run in three different modes. The first mode is
open loop, which only performs measurements and nothing else. In this mode,
no adaptive optics is performed and FOAM functions as a measurement plat-
form. The second mode is closed loop and in this mode the measurements are
used to drive the actuators and correct the incoming wavefront. This feedback
loop is the adaptive optics loop. The third mode is calibration mode which is
only run once and can be used to perform various calibrations on the system.

4.3.2 HOOKS

The framework provides several hooks that can be used to attach the prime
module to. The prime module can then decide what to do at each of these
hook functions, and use various modules to process data or drive actuators.

There are program-wide hooks which are called at the beginning of the pro-
gram to initialise the (prime) modules, at the end to clean things up and to
process messages when commands are received from a user. Additionally,
there are hooks for the open and closed loop modes. A hook is called at the
beginning and end of these modes, and additionally, one is called during the
main loop. For the calibration mode, there is only one hook which is called as
this mode does not provide a loop.

The following piece of pseudocode illustrates the use of hooks. For a complete

28

4.3 ARCHITECTURE

skeleton, see Appendix C.

Code snippet 4.1: FOAM hook illustration

1 main() {

2 modInitModule ()

3

4 fork (listenLoop ())

5

6 while (true) processUserInput ()

7 modStopModule ()

8 exit

9 }

10

11 listenLoop () {

12 while (mode != shutdown) {

13 switch (mode) {

14 case ’open’: modeOpen ()

15 case ’closed ’: modeClosed ()

16 case ’calibration ’: modeCal ()

17 }

18 }

19 modStopModule ()

20 }

21

22 modeOpen () {

23 modOpenInit ()

24 while (mode == open) {

25 modOpenLoop ()

26 }

27 modOpenFinish ()

28 }

In this example, all mod* functions are hooks that are not defined by FOAM
itself, but must be defined in the prime module. modInitModule() and
modStopModule() are the hooks called to initialise and clean up the whole
program, while modOpenInit(), modOpenLoop() and modOpenFinish() are the
three hooks used during open loop mode. The same method is used for closed
loop mode, and during calibration mode only a hook similar to modOpenInit()
is available. A more detailed description of these hooks is provided in Ap-
pendix D.

4.3.3 PROGRAM FLOW

In this section, I briefly discusses the general program flow to get an overview
of FOAM.

After initialisation, FOAM splits into two threads. The threads share the same
memory, so the variables initialised before the threading are available to both
threads. One thread runs in a high priority mode, ensuring access to comput-
ing resources, while the other runs with a lower priority. The high priority
thread does the hard work and control the AO, while the secondary thread
opens a socket and listens for incoming connections. Additionally, the first

29

4. FOAM DESIGN

thread can again use multiple threads to provide scalability on multi-core or
-CPU platforms.

To send commands to FOAM, a user or program can connect to it using TCP/IP
sockets on a user-configurable port. Once a connection is established and valid
commands are received by FOAM, the shared variables are used to change
the mode of operation of the high priority thread, in combination with con-
dition variables in certain cases. When a valid command is received, this is
broadcasted to all connected clients. There is no direct feedback to the client
sending the command, instead any change in the software is broadcasted in-
dependently of the clients connected (e.g. model-view-controller). This allows
simultaneous control of FOAM by multiple clients. Illegal commands are re-
ported to the client that sent them only.

The advantage of using TCP/IP sockets to connect to FOAM is that this pro-
vides a scalable way to handle multiple users. FOAM internally uses libevent
to multiplex network I/O to handle multiple clients at the same time. libevent
is capable of multiplexing I/O for webservers which typically deal with much
more than FOAM will, hence this is unlikely to pose a limitation in the future.
Besides this scalability, one can easily make a (G)UI compatible with FOAM
since the commands are standardised. At the moment, telnet is used to con-
nect to FOAM. Automating control is also easy, as long as the software trying
to interact with FOAM can talk TCP/IP.

While the flow of the low priority user I/O thread is more or less fixed, the
high priority thread is highly customisable using prime module and modules.
FOAM provides a bare minimum for the open loop-, closed loop- and calibra-
tion modes, but the specifics must be filled in by the prime module using the
hooks discussed above.

4.3.4 HARDWARE ABSTRACTION

To provide a flexible setup, I abstracted the hardware from FOAM to such a
level that all wavefront sensors and -correctors can be described with the same
parameters. The abstraction for WFSs and WFCs is discussed in this section.
The technical details are given in Appendix D.

WFS

A wavefront sensor is generalised by FOAM as a sensor with the following
characteristics:

Resolution The pixel-resolution attributed to the sensor, which states a hori-
zontal and vertical resolution, as well as the bit depth for each pixel,

Calibration The dark- and flat-field calibration images used to correct the in-
coming sensor images.

What becomes clear from the above list is that nothing relates the above charac-
teristics to anything more than a camera. In order to keep the system as general

30

4.3 ARCHITECTURE

and flexible as possible, I have chosen to store the specific WFS details in mod-
ules. For example, if a system uses a Shack-Hartmann WFS, a specific module
will be used which adds relevant attributes to the sensor. These include:

Cell grid The resolution of the subapertures used, i.e. 8 × 8,

Track size The pixel size of the windows used to track the offsets in each sub-
aperture,

Calibration The influence function stored in singular value decomposition
format,

Measurements The matrix of offsets the SH WFS measures for each subaper-
ture.

The combination of these two sets of properties allow the software to use the
WFS to correct the wavefront. The specific details are not relevant here, but can
be found in the software documentation.

WFC

The wavefront corrector, which will often be a deformable mirror, is the actu-
ator correcting the wavefront. In FOAM, this actuator is generalised with the
following properties:

Actuators The number of actuators a WFC has,

Control A vector of control signals to be sent to each actuator, which range
from -1 to 1,

Gain The different gains used for this actuator.

Again, to keep the system as general as possible, the control signals cover the
range from -1 to 1. The module responsible for interacting with the hardware
like a deformable- or tip-tilt mirror can then translate these control signals to
voltages. One thing to keep in mind here is that some actuators might not
respond linearly in the voltage range they accept. The control signals used here
are linear however, such that a conversion might be necessary in the module.
An example is a membrane mirror, which responds linearly in voltage squared.

Besides these interfaces, each module uses its own data type to characterise
a device it will work with. Examples of this include cameras, filter wheels,
display routines etc.

4.3.5 PARALLELISATION

To provide scalability to the code, the computationally intensive tasks should
be threaded such that the load can be distributed over multiple CPUs CPU-
cores. Since FOAM itself does not perform any computational intensive tasks
however, threading has been kept to a minimum here.

31

4. FOAM DESIGN

Control Software
(FOAM)

User (interface)

OBJ ATM TEL FW1 WFC SCIBS

WFS

FW2

Figure 4.3: An implementation of FOAM, showing the framework at the centre, which
communicates with the user and modules (dashed boxes) only. The hardware itself is
shielded from FOAM, the specific hardware modules form a shell around the frame-
work itself. This implementation allows for easy replacement of any hardware compo-
nent, the framework only needs minor modifications as all hardware related commands
are implemented in the modules.

The computationally intensive tasks such as dark- and flat-fielding,
correlation- or centre of gravity-tracking etc., are performed in modules. The
modules currently supplied with FOAM are not threaded, but the architecture
of FOAM is designed in such a way that threading these modules only requires
rewriting the modules themselves.

Although threading is not implemented, FOAM internally uses data types that
are suitable to use in combination with a BLAS1, like ATLAS2. These highly
optimised libraries are available on many platforms and are used for several
linear algebra operations involving vectors or matrices. These libraries are for
example used during the vector-matrix multiplication necessary to calculate
the control signals. Even without threading, this provides a significant perfor-
mance boost.

1Basic Linear Algebra Subprograms, http://www.netlib.org/blas/.
2http://math-atlas.sourceforge.net/

32

http://www.netlib.org/blas/
http://math-atlas.sourceforge.net/

5th Chapter

FOAM IMPLEMENTATION

This chapter describes some results obtained with a simulation implementa-
tion of FOAM, looks into possible future extensions, and finally concludes by
reviewing the requirements stated at the beginning of the previous chapter.

5.1 SIMULATIONS

Even though FOAM has not been used in a real adaptive optics setup yet, it
does provide simulation capabilities that allow it to simulate seeing and correct
this artificial error afterwards.

TEL

Simulated Sensor OutputSample wavefront

w WFCWFCWFC WFS

Figure 5.1: Schematic depiction of the simulation process in FOAM. A simulated wave-
front is cropped to the size of the sensor resolution, with the cropping windows moving
over the simulated wavefront with speed w to simulate wind. The cropped wavefront
is passed through the wavefront correctors, after which the wavefront is cropped with
an image of the telescope aperture. After this, the wavefront is passed through a simu-
lation of a wavefront sensor which in this case is a Shack-Hartmann WFS.

The simulation starts with a sample artificial wavefront, which is then passed
through the various elements in the simulated AO system. This process is
shown in Fig. 5.1. The simulation can be tweaked using several variables avail-
able through FOAM. For example, the wind speed can be altered, as well as a
seeing factor, which is multiplied with the raw input wavefront to worsen or
lessen the seeing.

Besides this type of simulation, FOAM can also use WFCs to simulate an error.

33

5. FOAM IMPLEMENTATION

This is done constructing a fake actuator signal, either periodic or random,
which is fed to the simulation routine for a WFC. The output this gives is then
passed through the rest of the simulation. The advantage of this method is
that an error produced by such a simulated WFC can be perfectly corrected
by that same WFC. This is an acid test for the whole calibration-measurement-
reconstruction loop performed by FOAM: this error should be easy to correct.

5.1.1 TIP-TILT SIMULATIONS

Using revision 477 of FOAM with prime-module simdyn, I simulated a
sawtooth-shaped tip-tilt error signal with amplitude 1 and a 40-frame period-
icity which was corrected using the same routine that produced the error. The
results of this simulation are presented in Fig. 5.2, which shows the difference
in error- and control signal. The mean value of this difference is about 1× 10−5

with a variance of 4× 10−6.

-0.005

-0.004

-0.003

-0.002

-0.001

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0 20 40 60 80 100 120

T
T

 S
ig

n
al

Frame

 X
 Y

Figure 5.2: This graph shows the difference between the signal going to the tip-tilt rou-
tine to simulate an error and the signal that was reconstructed after measuring the sub-
aperture offsets. The signal shows the 40-frame periodicity which was used to generate
the sawtooth error signal for the tip-tilt mirror.

Using the same error, instead of using a regular sawtooth error signal, I used a
randomly drifting error, to analyse the correction capabilities for FOAM with
a less regular error. The result of this simulation is given in Fig. 5.3. Instead of
plotting the difference, the error- and correction signal itself were plotted this
time.

A more realistic test is to look at the simulation of a real error, i.e. the situation
shown in Fig. 5.1. I have also done this and the results are in accordance with
the expectations based on the previous analysis. Because this error was sim-
ulated using an artificial wavefront, comparison of the error signals with the
correction signals for the WFC is not possible. Instead, I summed the offset-
vectors measured for each subaperture, and divided this sum by the number of
subapertures. The result is thus an average tip-tilt error over all subapertures,
which I’ve compared between open-loop without correction and closed-loop

34

5.1 SIMULATIONS

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

T
ip

-t
il

t
Y

Tip-tilt X

Error input
Correction output

Figure 5.3: A random tip-tilt error corrected by FOAM. The correction signal closely
follows the error, as expected.

with correction in Fig. 5.4.

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

-1 -0.5 0 0.5 1 1.5 2

A
v

er
ag

e
T

T
 Y

 o
ff

se
t

[p
ix

el
]

Average TT X offset [pixel]

Uncorrected
TT corrected

Figure 5.4: Correction of simulated seeing using an artificial wavefront. Without cor-
rection, the image drifts around, but when tip-tilt correction is turned on, the image
displacement is cancelled. Note the expected spread around the origin.

Note that there is a one-frame lag between the error and the correction of that
error, such that a spread around the origin is expected. Because of this one-
frame delay, the correction applied to frame N is based on the error in frame
N − 1. Therefore, the correction on frame N should be perfect for frame N − 1.
Keeping this in mind, the spread around the origin of the corrected displace-
ment must be caused by the change in the error between frame N and N + 1.
Thus, the difference in the (x,y) error vector between frames N − 1 and N
should be equal to the offset from the origin of the correction for frame N .
Calculating the mean and variance for both the length of the correction offset
vectors and the length of the error-difference vectors, I found that these are
quite similar. For the corrected offsets, the mean was about 0.11 pixels, with a

35

5. FOAM IMPLEMENTATION

variance of 4.0× 10−3, while for the error-difference vectors, this was 0.11 and
9.4×10−3. Thus the statistics of the spread are in accordance with expectations.

Thus, in simulation mode, FOAM works as expected, it can simulate and cor-
rect tip-tilt errors with a high precision. This shows that the underlying mech-
anisms of FOAM are working and that this means that FOAM will also work
on real adaptive optics systems.

5.2 AVAILABILITY

To encourage the development of FOAM, the source code is available under the
GNU GPL1. In a nutshell, this means that anyone can take the code, adapt it as
they like, and redistribute it, as long as the redistributed code is also released
under the GPL. This provides freedom to develop the source code on the one
hand, while ensuring that the fruits of development will be returned to the
community on the other hand. Since this software will most likely be used
in an academic environment and the development was funded with public
money, this does not seem more than fair.

If one does not wish to return the modifications to the community, this is also
possible, but in that case the software must be kept in-house. Additionally, the
source code may be released under a different license by request, if a specific
situation requires a tailor-made solution.

5.3 FUTURE EXTENSIONS

Although FOAM is still in work in progress, it is already clear that several
extensions can be made to the current modules supplied. Some of these will be
discussed here, considering the possibilities and possible issues involved.

5.3.1 MCAO

While adaptive optics itself is now used more and more, an improvement to
this system can be made by using several different wavefront sensors at the
same time. Placing these in different planes allows to analyse the atmospheric
turbulence at different heights in the atmosphere.

This so called multi-conjugate adaptive optics is more challenging than regular
AO because of the added wavefront sensor. It is not a priori clear how the data
from these different sensors should be combined. An extension for FOAM
would thus be to add routines which can combine the output from several
sensors and improve the correction of the wavefront.

1Details of the GNU General Public License can be found at http://www.gnu.org/licenses/
gpl.html.

36

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html

5.4 CONCLUSIONS

5.3.2 PARALLELISATION

Currently, the only threading is done in the framework, where one thread han-
dles user input while the other does the actual AO. As noted earlier, there is still
room for improvement performance-wise, as the number crunching modules
are still single threaded. Although for some procedures threading is rather
straightforward (i.e. correlation- or centre of gravity tracking can be done in
parallel for all subapertures), for others this is far from trivial.

5.3.3 C++

Another improvement would be to (partially) port FOAM to C++. Since C++
provides some language constructs that have quite a few benefits for the mod-
ular approach (i.e. classes), this would be a logical step. Unfortunately, at the
beginning of the development, I was not aware of this and thus FOAM is writ-
ten in C only. Fortunately, C is a subset of C++, such that porting will not be as
difficult as porting from C to, say, Fortran.

5.3.4 REAL-TIME LINUX

Since a computer can do only one thing at a time (which is not entirely true
anymore for newer multi-core machines), time is sliced up and given to pro-
cesses requiring the CPU in turn. Higher priorities get longer time slices, but
all processes are given at least some processing time. When running adaptive
optics control software, it is possible that some network I/O needs to be taken
care of, or some file on the hard disk needs to be accessed. Because network
and hard disk activity are relatively slow, this can introduce a sudden delay in
the AO software, causing it to miss up to a few frames, potentially causing the
software to lose the lock.

To provide tighter control over which processes get CPU time, a real-time oper-
ating system can be used. For simple controlling algorithms this is not crucial,
but smarter algorithms can benefit from a tighter timing control.

5.4 CONCLUSIONS

To review the requirements made earlier, here is a list which discusses to what
extent they have been addressed:

Portability FOAM is written in C and specific hardware code will not be in-
cluded. The libraries used in FOAM are at least as portable as FOAM it-
self. Furthermore, FOAM internally uses generalised controls which are
translated into hardware controls by the drivers, providing abstraction
from the hardware.

Scalability FOAM is be written in C and can provide threaded modules for
the computationally intensive tasks. The OS can then easily distribute
these tasks over different cores (single- or multi-CPU).

37

5. FOAM IMPLEMENTATION

Extensibility Because of the modular setup, big pieces of software can be re-
used in other AO systems. Possible extensions can include the use of
multi-conjugate AO.

Usability The use of a TCP/IP sockets makes interfacing to the software easy,
both for humans and other software.

Public The source code of FOAM is released under the GPL, such that anyone
is free to take and modify the code to their liking. Furthermore, extensive
documentation is supplied to make this possible.

This architecture thus meets the requirements stated at the beginning of this
chapter. The architecture is flexible and general enough to cope with both a
simple tip-tilt tracking system or a sophisticated multi-conjugate AO system.
In the first case, we have one WFC with two degrees of freedom (tip and tilt)
and a WFS with one subaperture, i.e. a camera, tracking the image displace-
ment. The second system is described by having two (or more) WFCs which
are driven using the output of several wavefront sensors. Even more generally
speaking, we can also describe a simple telescope tracking mechanism with
this architecture. In this case there are zero WFCs and a WFS with one sub-
aperture. The image motion is then corrected by the telescope itself at low fre-
quency. As the reader might notice, these three different systems all fall nicely
within the design of this architecture.

Most, if not all new telescopes under construction today incorporate some kind
of adaptive optics systems. Examples of this include the ATST (Keller et al.,
2002) and the E-ELT (Gilmozzi and Spyromilio, 2007), but there are many more.
With the ever increasing diameter of telescopes, this is not remarkable. To in-
crease the resolution, one cannot go without some mechanism to correct the
atmospheric distortions, and adaptive optics plays a crucial role in fulfilling
this task.

With this in mind, software to run such systems will be in high demand as
these complex systems need to be controlled. Putting FOAM in this broader
context, it could potentially be quite useful indeed.

38

6th Chapter

APPLICATIONS

6.1 FOAM AT THE MCMATH-PIERCE TELESCOPE

FOAM has been tested on the the McMath-Pierce solar telescope at Kitt Peak
(Pierce, 1964). This AO system consists of one Shack-Hartmann wavefront sen-
sor, one deformable mirror and one tip-tilt mirror, and some miscellaneous
hardware such as filter wheels. The system is similar to the one depicted in
Fig. 4.1, and served as a basis for the development of FOAM. The details of the
system are listed in Table 6.1.

6.1.1 AO SETUP

Hardware Model and Vendor Driver

Camera CA-D6 260× 260 8-bit CCD, 955 fps (Dalsa) -
Frame grabber PC-Dig PCI board (Coreco Imaging) ITIFG 8.4.0-0
Deformable mirror 37-actuator membrane mirror (Okotech) -
DM Controller PCI board (Okotech) Direct I/O to /dev/pci

Tip-tilt mirror PSH 8 Tilting platform (piezosystem jena) -
DAC board DaqBoard/2000 Series (IOtech) Linux 2.6 driver
Computer Intel Core 2 processor / Debian 4.0 -

Table 6.1: The hardware used in the adaptive optics system used at the McMath-Pierce
telescope, which served as a testbed for FOAM. This setup closely resembles a system
used previously at the same telescope for infrared adaptive optics, see http://www.

noao.edu/noao/staff/keller/irao/ for details.

The Dalsa camera is part of a Shack-Hartmann wavefront sensor, with a lenslet
array in front of the camera. It provides the input for the adaptive optics sys-
tem. The camera output is first fed to a frame grabber which directly interfaces
with the camera and temporarily buffers this data. After that, the frames are
available to the rest of the system using the ITI frame grabber driver by GOM
GmbH1. There are two actuators correcting the wavefront, one tip-tilt mirror

1See http://sourceforge.net/projects/itifg/ for details.

39

http://www.noao.edu/noao/staff/keller/irao/
http://www.noao.edu/noao/staff/keller/irao/
http://sourceforge.net/projects/itifg/

6. APPLICATIONS

for correcting the lower order modes, and one 37-actuator deformable mirror
for correcting the higher order modes. The tip-tilt mirror is controlled by two
digital to analogue ports on a DaqBoard/2000 by IOtech. The deformable mir-
ror is controlled by a PCI card which can be accessed directly through /dev/pci
on Linux systems.

2

1 Membrane mirrors

Silicon micromachined mirrors are fabricated using the technology of silicon bulk micromachin-
ing.

The mirror, shown in Fig. 1, consists of a silicon chip mounted over a PCB holder. The chip
contains silicon nitride (composite) membrane, which is coated to form a mirror. The PCB
contains the control electrode structure, spacer and connector. It also serves as the mirror
package. The shape of the reflective membrane is controlled by voltages applied to the control
electrodes with the membrane grounded.

The device can be used for fast dynamic correction of low-order optical aberra-
tions such as defocus, astigmatism, coma, etc in lasers, telescopes, ophthalmology,
displays and general imaging optics.

Figure 1: Typical view of a 37-channel micromachined deformable mirror with and without
package. Please note that these mirrors can be fabricated with different package designs, so
the mirror you have may look differently.

The scheme of the assembled mirror and the principle of control are illustrated in Fig. 2.

V1 VnV2 V3

Al-coated membrane Si chip

Spacer

Control electrodes

voltages

Control

Vb

Bias voltage

Substrate

PCB

Figure 2: Schematic section of the micromachined adaptive mirror.

OKO Technologies Tel: +31 15 285 15-47 • Fax: +31 15 285 15-48 • E-mail: oko@okotech.com www.okotech.com

(a)

2914520 8 2 1

671937 3015

3 4 2813921

16171836 31

12111022 27

33 323435

25 262423

(b)

Figure 6.1: (a) An example of the 37-channel membrane mirror by Okotech. (b) The
actuator layout of the mirror. For the tip-tilt simulation, the greyed actuators were set
to voltage x while the other actuators were set to −x.

The implementation of FOAM for this setup began by writing modules for
the hardware. Specifically, modules were written for interfacing with the var-
ious drivers used in the setup, which are listed in Appendix D. After writing
these hardware interfacing modules, I wrote a prime module linking all this
together which configures the hard- and software so it can be properly used.
Unfortunately the deformable mirror was not used for wavefront correction
in this implementation yet. After implementing the system, it was tested on
the McMath-Pierce telescope using artificial sources of wavefront errors as dis-
cussed below.

6.1.2 TIP-TILT PERFORMANCE

Without the deformable mirror, the tip-tilt performance could still be tested.
For this test, the camera ran at a 100 frames per second since the ITIFG 8.4.0
driver seems to have problems at high frame rates. However, a high frame rate
was not crucial and thus this limitation did not pose a problem.

In the first series of tests an error in the wavefront was introduced by the de-
formable mirror. By setting the left actuators to a voltage x and the right actu-
ators to voltage −x, this produces a tip-tilt error in the wavefront (see Fig. 6.1).
This error was consequently corrected by the tip-tilt mirror. The second test
consisted of manually moving a pinhole around in the telescope focus result-
ing in an image displacement. This was done in two ways, one error was of
low frequency and high amplitude (‘big shake’), while the other had a higher

40

6.1 FOAM AT THE MCMATH-PIERCE TELESCOPE

DM

control
hardwareWFS

lens

FW1

TT

light source

(a) DM error test setup

control
hardware

WFS

pinhole

lens

TT

light source

(b) ‘Shake’ test setup

Figure 6.2: (a) The test setup for FOAM in which the deformable mirror generates a
tip-tilt error in the wavefront. A pinhole is used in the first filter wheel (FW1), resulting
in a flat wavefront arriving at the tip-tilt mirror, which is initially in its centre position.
The same flat wavefront encounters the deformable mirror (DM), which tilts it slightly,
such that an error is measured by the wavefront sensor (WFS). The control system then
positions the tip-tilt mirror such, that it corrects the error introduced by the DM. For
this test, FW2 is not used. (b) The ‘shake’ test, where a pinhole was moved around to
generate an error. The offset pinhole produces a spherical wavefront, which is focused
by a lens. Because the pinhole is not centred above the lens, the focused wavefront is
not flat, but tilted. Moving the pinhole around therefore results in a dynamical error,
which is consequently corrected by the tip-tilt mirror. The DM was not used in this test
and is therefore not drawn.

frequency but lower amplitude (‘little shake’). This generates an image offset
as well, but the amplitude of the error is not restricted to the rather limited
stroke of the deformable mirror. See Fig. 6.2 for a schematic depiction of the
test setup used.

To analyse the performance of FOAM in these tests, the image offsets for each
Shack-Hartmann subaperture was recorded. As only the tip-tilt correction was
used during these tests, it was expected that the overall image displacement
would be minimised. To test this, the offsets for half of the subapertures was
summed to get measure for this displacement. Summing over a few subaper-
tures is useful because this averages out some errors between the subapertures.

The DM-induced error test

During the first test, the deformable mirror introduced a tip-tilt error in the
wavefront. The results of this test are presented in Figs. 6.3–6.4. For this test,
the periodicity of this error was set to 300 frames, equivalent to 3 seconds.

The correction was applied using a differential gain of 0.3, meaning that only
30% of the correction was applied each frame. This effectively means the cor-
rection is averaged out over a few frames, which results in a more stable cor-

41

6. APPLICATIONS

-8

-6

-4

-2

 0

 2

 0 200 400 600 800 1000 1200 1400

X
 o

ff
se

t
[p

ix
el

]

Frame

Corrected
Uncorrected

 0

 1

 2

 3

Y
 o

ff
se

t
[p

ix
el

]

Figure 6.3: This graph displays the summed offset of several Shack-Hartmann subaper-
tures. The top graph shows the Y-offset, the bottom graph shows the X-offset. The
uncorrected error in the Y offset has been shifted up by 6 pixels to allow for better com-
parison. As the error introduced with the DM was one-dimensional, a majority of the
shift is only visible in the X offset signal, the Y offset remained rather static and hardly
needed correction. These results were obtained with revision 544 of FOAM.

rection. The downside of this approach is that not the complete error can be
corrected. This is visible from the graphs in Fig. 6.4, as there is still a slight
wobble in the corrected signal. As the data sets were taken sequentially, a
frame-by-frame comparison is not useful. The phase difference between the
plots is therefore insignificant.

The shaking pinhole tests

The results of the second pinhole shaking tests are presented in Figs. 6.5–6.6,
which show two continuous data sets for the little-shake and big-shake errors
with increasing differential gains applied for the correction of the tip-tilt mirror,
and a power spectrum for those data sets.

Although there are some residual errors in the corrected images, the ampli-
tude of the error is greatly reduced in both tests. Of the two tests, the system
seems to perform better in the little-shake test. The increasing gain does not
seem to have any effect on the correction in the big-shake test, as is visible
from Figs. 6.5b–6.5c. Even tough the power spectrum shows a strong decrease
in power when enabling the system, the correction appears to be equally effec-
tive for gains 0.3, 0.7 and 1.0. The influence of the gain appears to be stronger
for the little-shake test, where the fluctuation in the X- and Y-offsets seems to
decrease with increasing gain. This is further supported by the power spec-
trum of this signal, which shows that the peak at the dominant frequency of
0.012 is reduced much more at higher gains.

For the big-shake test, it appears that though the image is stabilised most of the
time, it regularly jumps to an -10 pixel offset during the whole test for all gains.
This is probably due to the rapid motion of the pinhole at these times. As the

42

6.1 FOAM AT THE MCMATH-PIERCE TELESCOPE

 0

 0.5

 1

 1.5

 2

 2.5

 3

-3 -2 -1 0 1 2 3 4

Y
 o

ff
se

t
[p

ix
el

]

X offset [pixel]

Corrected

-7

-6.5

-6

-5.5

-5

-4.5

-4

-7 -6 -5 -4 -3 -2 -1 0 1

Y
 o

ff
se

t
[p

ix
el

] Uncorrected

Figure 6.4: This plot shows the summed offset in both X- and Y directions with and
without correction for the first 500 frames. Again there is little variation in the Y-offset
while the X-offset is clearly corrected.

data set is continuous, we can extrapolate the error shown during roughly the
first thousand frames to the rest of the data set. In doing so it appears that these
10-pixel-offsets coincide with the rapid motion of the pinhole. As this motion
takes about 100 frames, and moves from a +10 to a -25 pixel offset in that time,
this corresponds to approximately one pixel per three frames. This rapid mo-
tion is apparently too much for the system too handle. Fortunately, the errors
in the big-shake test are far worse than anything encountered even during bad
seeing. The same effect is also visible with the little-shake test, although it ap-
pears that the increasing gain dampens these offsets, there are spikes clearly
visible with gain at 0.3, but these dampen out as the gain increases.

Overall, these tests show that the system indeed works in practice. Even
though these test only used tip-tilt correction, the routines used are generalised
such that they should work with any wavefront corrector. Future tests will
hopefully show FOAM indeed works with for example deformable mirrors.
After proving that the concept works, it can hopefully be incorporated in live
adaptive optics systems.

43

6. APPLICATIONS

-2

-1

 0

 1

 2

-2 -1 0 1 2

Y
 o

ff
se

t
[p

ix
el

]

X offset [pixel]

(a)

-20

-10

 0

 10

 0 1000 2000 3000 4000 5000 6000

X
 o

ff
se

t
[p

ix
el

]

Frame

g=0.0 g=0.3 g=0.5 g=0.7 g=0.9 g=1.0

-30

-20

-10

 0

 10

Y
 o

ff
se

t
[p

ix
el

]

(b)

-3

-2

-1

 0

 1

 2

 0 0.005 0.01 0.015 0.02

L
o

g
10

(P
o

w
er

)

X Frequency [1/frame]

Uncorrected
Gain = 0.3
Gain = 0.7
Gain = 1.0

(c)

Figure 6.5: Results for the ‘big-shake’ test. (a) The offsets for some of the individual
subapertures corrected with a gain of 0.5. (b) Summed X- and Y-offsets, with various
differential gains set for the correction denoted by the g in between the two plots. Note
that a gain of 0 effectively disables correction and shows the uncorrected error. (c) The
power spectrum of the uncorrected and corrected offsets for various gains. These results
were obtained using revision 553 of FOAM.

44

6.1 FOAM AT THE MCMATH-PIERCE TELESCOPE

-1

 0

 1

-1 0 1

Y
 o

ff
se

t
[p

ix
el

]

X offset [pixel]

(a)

-4

-2

 0

 2

 4

 6

 0 1000 2000 3000 4000 5000 6000

X
 o

ff
se

t
[p

ix
el

]

Frame

g=0.0 g=0.3 g=0.5 g=0.7 g=0.9 g=1.0

-20

-15

-10

-5

 0

 5

Y
 o

ff
se

t
[p

ix
el

]

(b)

-4

-3

-2

-1

 0

 1

 0 0.01 0.02 0.03 0.04 0.05 0.06

L
o

g
10

(P
o

w
er

)

X Frequency [1/frame]

Uncorrected
Gain = 0.3
Gain = 0.7
Gain = 1.0

(c)

Figure 6.6: Results for the ‘little-shake’ test, same plots as in Fig. 6.5.

45

6. APPLICATIONS

46

A NEDERLANDSE
SAMENVATTING

A.1 ATMOSFERISCHE STORINGEN

Als we naar de sterren kijken is er een onderscheid te maken tussen waarne-
mingen vanaf het aardoppervlak en vanuit de ruimte. Vanuit de ruimte is het
zicht op de sterren veel beter door de afwezigheid van de atmosfeer die het
licht verstoort, alleen zijn de kosten hiervan vele malen groter. Telescopen op
aarde kunnen daarnaast een stuk groter zijn, omdat ze niet met een space shutt-
le of raket mee de ruimte in hoeven. Het probleem is echter dat de atmosfeer
het zicht belemmert, waardoor plaatjes minder scherp worden dan ze zouden
kunnen zijn.

De storing veroorzaakt door de atmosfeer is ’s nachts duidelijk te zien. Als er
al geen wolken zijn die de sterren voor ons verbergen, lijken ze een beetje heen
en weer te bewegen, en variëren ze in helderheid: de sterren twinkelen. Met
het blote oog lijkt dit effect misschien niet zo sterk, maar als je gedetailleerde
plaatjes wilt maken van hemelse objecten beperkt dit je mogelijkheden sterk.

(a) (b)

Figuur A.1: Een voorbeeld van optische verstoringen. Links een vervormde onder-
gaande zon en rechts een licht-donker patroon op de bodem van een aquarium. Foto’s
van Wikipedia, door Mila Zinkova, vrijgegeven onder de GNU FDL, http://www.gnu.
org/copyleft/fdl.html.

47

http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html

A. NEDERLANDSE SAMENVATTING

De reden van deze verstoringen zit in het feit dat de atmosfeer niet een goed
gemengde massa is. De temperatuur verschilt van plek tot plek, en daardoor
varieert de brekingsindex van de lucht ook. Deze eigenschap is namelijk af-
hankelijk van de temperatuur, en geeft de mate aan waarmee de lucht in de
atmosfeer het licht afbuigt. Omdat de brekingsindex door de atmosfeer heen
varieert, worden verschillende lichtstralen die op je telescoop vallen anders
vervormd.

Een voorbeeld is de ondergaande zon, die soms sterk vervormd kan zijn als
deze laag aan de horizon staat (zie Fig. A.1a). Dit effect is extra sterk in deze
situatie, waardoor het goed te zien is. Een soortgelijke vervorming kun je zien
als je vanaf de kant van een zwembad onder water probeert te kijken, alles
lijkt dan vervormd omdat het wateroppervlak niet mooi glad is. Daarnaast zie
je op de bodem van zwembaden ook licht-donker patronen, die ook door het
golvende wateroppervlak worden gevormd (zie Fig. A.1b).

Het is hierbij belangrijk om op te merken dat het om het verschil in tempera-
tuur is die het probleem veroorzaakt. Als de hele atmosfeer heel warm of koud
is (zomer/winter), heb je deze namelijk niet. Ook als de oppervlakte van het
water in een zwembad glas is, wordt het beeld niet vervormd, maar hooguit
wat verplaatst.

A.2 DE STORING CORRIGEREN

Een methode om de storing te corrigeren heet adaptieve optiek. Adaptief om-
dat het systeem zich aanpast aan de storing, en optiek omdat het gebruikt
maakt van spiegels en lenzen.

Het systeem kijkt constant naar de verstoring veroorzaakt door de atmosfeer
met speciale sensoren. Dit gebeurt in hoog tempo omdat de verstoring erg
snel verandert, typisch wordt de storing honderden tot duizenden keren per
seconde gemeten. Als deze storing is gemeten zorgt een stukje hardware zoals
een computer ervoor dat speciale spiegels worden vervormd om de storing te
corrigeren. Deze spiegels zijn een beetje te vergelijken met lachspiegels, het
oppervlak is vervormd waardoor als je in een lachspiegel kijkt het beeld ook
vervormd is. De spiegels die bij adaptieve optiek worden gebruikt zijn echter
speciaal ontworpen om de atmosferische storing te corrigeren, en kunnen heel
snel vervormen om de storing bij te houden.

Zoals eerder gezegd verandert de storing in hoog tempo, waardoor ook de
correctie snel moet worden toegepast. Naast deze snelheid is er nog een ander
criterium dat belangrijk is voor deze correctie. Dit is de precisie waarmee de
spiegel kan vervormen. Aan de achterkant van de spiegels zitten kleine pootjes
die de spiegel vervormen. Hoe meer van deze pootjes er zijn, hoe preciezer de
vorm van de spiegel bepaald kan worden en hoe beter de correctie is.

48

A.3 HET CONTROLESYSTEEM

A.3 HET CONTROLESYSTEEM

Voordat de spiegel de storing kan corrigeren, moet eerst bepaald worden hoe
deze vervormd moet worden. Dit gebeurt aan de hand van de metingen die
de sensoren doen. De metingen hiervan worden ingelezen in een computer
systeem, en vervolgens wordt de vervorming die de spiegel moet krijgen bere-
kend.

Deze aansturing werd lange tijd echter door zeer specialistische systemen ge-
daan, welke moeilijk waren om te ontwerpen, en haast nog moeilijker om aan
te passen mocht het systeem iets veranderd worden. Dit werd gedaan omdat
normale PC’s niet snel genoeg zijn om de berekeningen uit te voeren. Er moet
immers ongeveer duizend keer per seconde ingewikkelde berekeningen uitge-
voerd worden die voor PC’s erg zwaar kunnen zijn.

De computers zijn nu op een punt dat ze snel genoeg zijn om deze bereke-
ningen uit te voeren. Dit heeft dus als voordeel dat er geen specialistische
hardware meer gebruikt hoeft te worden. Voordat dat kan is er echter software
nodig die die berekeningen uit kan voeren.

A.4 FOAM

FOAM, wat een omgekeerde afkorting is voor Modular Adaptive Optics Frame-
work, is een stuk software dat op dit soort systemen gebruikt kan worden. Het
is een poging om de gebreken van eerdere software op te lossen, zodat het
een universeel stuk software biedt dat op een uiteenlopend scala aan systemen
gebruikt kan worden.

A.4.1 EISEN AAN DE SOFTWARE

Om dit te bereiken heb ik FOAM ontworpen met de volgende eisen in mijn
achterhoofd:

Portabiliteit De software moet makkelijk op andere systemen te gebruiken
zijn.

Schaalbaar FOAM moet de snelheid van grote computers efficiënt kunnen be-
nutten.

Uitbreidbaar Het moet makkelijk zijn om een systeem uit te breiden of aan te
passen.

Bruikbaar Het moet eenvoudig te bedienen zijn door zowel mensen als andere
software.

Publiek De software moet vrij beschikbaar zijn voor ieder die er wat mee wil
doen.

49

A. NEDERLANDSE SAMENVATTING

A.4.2 DE SOFTWARE ZELF

FOAM is modulair opgebouwd, zodat veel stukken software makkelijk kun-
nen worden hergebruikt of worden vervangen, mocht dit nodig zijn. Dit is han-
dig omdat op deze manier eenvoudig stukken hardware kunnen vervangen
(bijvoorbeeld een andere spiegel) zonder dat het hele programma herschreven
hoeft te worden. Ook kun je op deze manier makkelijk functionaliteit toevoe-
gen. De globale architectuur van FOAM is weergegeven in Fig. A.2.

Framework

Mod

ModMod

Mod

Mod Mod

Prime Module

Figuur A.2: De FOAM architectuur. Het kernprogramma van FOAM, het Framework
zorgt voor de basisfunctionaliteit. De verschillende modules kunnen dan via een Pri-
me Module aan elkaar gekoppeld worden. Deze is per systeem anders, en maakt het
mogelijk om FOAM op verschillende systemen te gebruiken.

De schaalbaarheid kan worden worden vergroot door meerdere dingen tegelijk
uit te rekenen. Dit is op een module-niveau mogelijk door reken-intensieve
taken parallel uit te voeren. Op dit moment werken de modules nog serieël,
er gebeurt nog weinig tegelijkertijd. Door de modulaire opbouw is dit echter
eenvoudig te implementeren, en dit staat ook op de planning om toegevoegd
te worden.

Verder kan FOAM via een netwerkverbinding bestuurd worden, zodat ge-
bruikers verbinding met het programma kunnen leggen, maar tegelijkertijd
kan ook een ander stuk software dat moet samen werken met het adaptieve
optiek-systeem met FOAM communiceren. Op deze manier kan het program-
ma naadloos in een groter systeem functioneren, mocht dat nodig zijn.

Om het gebruik van FOAM te bevorderen is gekozen voor een open source li-
centie, en wel de GNU General Public Licentie1. In een notendop houdt dit in
dat iedereen de software mag gebruiken en aanpassen, zolang de aangebrachte
wijzigingen ook weer vrij beschikbaar zijn voor anderen. Op die manier pro-
fiteert iedereen van de verbeteringen die worden gemaakt. Ik heb voor deze
licentie gekozen omdat dit waarschijnlijk het meest geschikt is in een academi-
sche omgeving, waar samenwerking erg belangrijk is.

1http://www.gnu.org/licenses/gpl2.html

50

http://www.gnu.org/licenses/gpl2.html

A.4 FOAM

A.4.3 FOAM IN EEN BREDERE CONTEXT

Zoals in de vorige paragraaf beschreven, is de architectuur van FOAM zo opge-
zet dat deze aan alle eisen die eerder gesteld werden kan voldoen, als dat al niet
gebeurt. Ondanks dat FOAM an sich nog grotendeels serieël werkt, en dus nog
niet goed schaalt op computers met veel verschillende rekeneenheden, kan dit
dankzij de modulaire structuur later relatief eenvoudig ingebouwd worden.

Hopelijk kan FOAM met zijn modulaire en gestructureerde opbouw de weg
vrij maken voor open en universele adaptieve optiek software. Omdat de te-
lescopen steeds groter worden, zal adaptieve optiek in de toekomst ook steeds
meer gebruikt worden. Hopelijk kan FOAM hier een steentje aan bijdragen.

51

A. NEDERLANDSE SAMENVATTING

52

B BRIEF FOAM MANUAL

This appendix provides a brief manual for end-users. Developers should also
look at the other appendices. This manual assumes the implementation for
FOAM on a specific system is already available, or that the software is only
used in simulation mode.

B.1 PREREQUISITES

FOAM depends on certain libraries, which need to be installed prior to instal-
lation of FOAM itself. The libraries used are all freely available and comply
with the ‘open and free’ mentality of FOAM.

The libraries necessary for basic functionality are:

• libm - the general purpose math library available on many systems,

• pthread - the POSIX threading library, used to provide threading, avail-
able on many systems,

• libevent 1.4 - an event multiplexing library available at http://monkey.
org/~provos/libevent/,

• SDL 1.2.11 - a graphical library providing a means to display sensor out-
put, available at http://www.libsdl.org/,

• GSL 1.8.2 - the GNU Scientific Library, which provides useful mathe-
matical routines as well as an API to BLAS routines, available at http:
//www.gnu.org/software/gsl/,

• GSLBlas 1.2 - a BLAS to be linked to GSL. Can be a statically compiled
version, such as refblas3, but ATLAS is recommended for its superior
performance.

In certain cases, other libraries are necessary as well, including:

• SDL_Image 1.2 - used for image I/O, necessary during simulation. Avail-
able at http://www.libsdl.org/projects/SDL_image/,

53

http://monkey.org/~provos/libevent/
http://monkey.org/~provos/libevent/
http://www.libsdl.org/
http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/
http://www.libsdl.org/projects/SDL_image/

B. BRIEF FOAM MANUAL

• fftw3 3.1.2 - used for Fourier transforms to simulate imaging by lenses,
necessary during simulation. Available at http://www.fftw.org/,

• OpenGL - used for fast display routines, useful because of reduced CPU
load. Different OpenGL implementations exist, and any implementation
adhering to the OpenGL specifications will suffice,

• libGLU, libGLUT - includes some extra OpenGL routines that FOAM de-
pends on when using OpenGL.

FOAM does not require the latest versions of all libraries listed. The minimum
version requirements of the libraries have not been established, as default ver-
sions supplied with distributions are typically new enough. The versions that
FOAM has been verified to work with are listed above for reference. One ex-
ception to this is libevent for which at least version 1.4 is necessary which is
not supplied with Debian Stable, and thus might be missing on other systems
as well.

If the libraries are not available on a specific system, the ./configure process
will diagnose this and show a list of missing libraries necessary for certain
build targets.

B.2 OBTAINING FOAM

To obtain FOAM, either download one of versions available at http://dotdb.
phys.uu.nl/~tim/foam/, or obtain any version from the Subversion reposi-
tory at http://dotdb.phys.uu.nl/svn/foam/. To check out the most recent
version version of FOAM, use

svn co http://dotdb.phys.uu.nl/svn/foam/trunk/code/ foam-latest

which will download the code to ./foam-latest. Alternatively, you can check
out the revision associated with this thesis with

svn co http://dotdb.phys.uu.nl/svn/foam/tags/ foam-thesis

After checking out a version from the Subversion repository, you need to run

autoreconf -sfi

to install the configure script for your system. This is not necessary when
downloading a pre-processed package of FOAM. After this step, continue with
the installation.

B.3 INSTALLATION

FOAM uses the GNU build system and therefore configuration and installation
of this software is the same as installing any other software using this system.

54

http://www.fftw.org/
http://dotdb.phys.uu.nl/~tim/foam/
http://dotdb.phys.uu.nl/~tim/foam/
http://dotdb.phys.uu.nl/svn/foam/

B.4 RUNNING FOAM

To compile FOAM you will need an ANSI C-compiler. After unpacking the
distribution, the Makefiles can be prepared using the configure command

./configure

You can then build the program by typing

make

The default set of packages (i.e. sets of software and hardware modules) to be
compiled, might not be possible or desired in your situation. The configure
script takes extra command line options such that you can specify which pack-
ages you do or do not want to build. You can also specify the location where
the FOAM binaries should be installed after compilation. For an overview of
these options, run

./configure --help

If you change any compilation options you will need to remove any existing
compiled files with

make clean

and re-run make.

If everything works as expected, you can install the software system-wide with

make install

B.4 RUNNING FOAM

The programs are built in the bin/ sub-directory of where FOAM was, and
can only be run from there by default, because the configuration files are ex-
pected to be in ../config. Therefor, to run the software, cd into bin/, and call
./foamcs-<name>, with <name> the name of the package you want to run.

After calling this program, FOAM will notify you of the initialisation process.
During this phase, be sure to check for warnings and errors.

55

B. BRIEF FOAM MANUAL

56

C FOAM SKELETON

This appendix shows the flow of FOAM at a functional level. This illustrates
where the hooks are called and how these can be used to attach to.

Code snippet C.1: FOAM code skeleton

1 main() {

2 modInitModule () // Initialize modules ,

3 // memory , cameras etc.

4

5 fork (startThread ()) // Branch into two threads ,

6 // one for AO, one for user

7 // I/O

8

9 sockListen () // Read & process user I/O.

10 exit

11 }

12

13 sockListen () {

14 while (true) { // In a continuous loop ,

15 parseCmd () // read the user input and

16 modMessage () // process it.

17 }

18 }

19

20 startThread () {

21 modPostInitModule () // After threading , provide

22 // an additional init hook.

23 }

24

25 listenLoop () {

26 while (ptc.mode != shutdown) { // Run continuously until

27 // shutdown.

28 switch (ptc.mode) { // Read the mode requested

29 // and switch to that mode.

30 case ’open’: modeOpen ()

31 case ’closed ’: modeClosed ()

32 case ’calibration ’: modeCal ()

33 }

57

C. FOAM SKELETON

34 }

35 modStopModule () // Shutdown the modules.

36 }

37

38 modeOpen () {

39 modOpenInit () // Open loop init hook.

40

41 while (ptc.mode == AO_MODE_OPEN) {

42 // Loop until mode changes.

43 modOpenLoop () // Actual work is done here.

44 }

45

46 modOpenFinish () // Clean up after open loop.

47 }

48

49 modeClosed () {

50 modClosedInit () // Closed loop works the

51 // same as open loop.

52

53 while (ptc.mode == AO_MODE_CLOSED) {

54 modClosedLoop ()

55 }

56

57 modClosedFinish ()

58 }

59

60 modeCal () {

61 modCalibrate () // Calibration mode provides

62 // only one hook.

63 }

Note that all overhead and housekeeping is not included here, and that the
subroutine prototypes are incomplete. The hook functions that must be speci-
fied in the prime module are prefixed by mod.

At the start of the program, FOAM calls modInitModule(), which should be
used to initialise any modules used, i.e. allocate memory, configure cameras
and things like that. Directly afterwards, the program splits up into two
(POSIX) threads. One thread is used for the adaptive optics routines that in-
tensively use the modules and should be programmed by the developer, while
the other provides standardised user input and output.

After threading, the AO thread runs through a second initialisation which is
called after threading. This can be useful for initialisation of libraries that can
only be initialised from the thread they will be called from later on (i.e. SDL).
After that, the program decides what mode to switch to, depending on the
value of the shared global variable ptc.mode.

For a detailed description of the functions used in the above example, please
consult the FOAM reference documentation.

58

D FOAM SUMMARY

This appendix provides a short summary of FOAM. The data types and rou-
tines used in the FOAM framework are discussed in some detail, while the
routines used modules are only listed here. For a details, consult the FOAM
documentation.

D.1 FOAM FRAMEWORK

D.1.1 DATA TYPES

FOAM includes some data types used to run the control software. These are
discussed here.

control t

The following data type is used to track AO operations of FOAM. It contains
relevant information on the hardware (wavefront sensors and -correctors, filter
wheels) and contains some overhead information on the AO operations itself.
A pointer to this struct is always passed on to the prime module functions,
where it can be used to the liking of the programmer. A short description of
each struct member is given as a comment. ‘(user)’ prefixes denote fields that
need to be filled out by the user (i.e. programmer), ‘(foam)’ prefixes indicate
fields that only FOAM worries about.

Code snippet D.1: control t data type

1 typedef struct {

2 aomode_t mode; // (user) the AO system mode

3 calmode_t calmode; // (user) the calibration mode

4 time_t starttime; // (foam) starting time of the system

5 time_t lasttime; // (foam) tracks the framerate

6

7 long frames; // (foam) number of frames parsed

8 long capped; // (foam) number of frames captured

9 unsigned long saveimg; // (user) capture this many frames

59

D. FOAM SUMMARY

10 float fps; // (foam) the current FPS

11

12 int logfrac; // (user) log certain info and debug

13 // messages 1/ logfrac frames.

14 // 1/50 times), default 1000

15

16 FILE *misclog; // (user) general purpose logfile

17 char *misclogfile; // (user) filename for the above

18 bool domisclog; // (user) toggle for the above logging

19

20 // WFS variables

21 int wfs_count; // (user) number of WFSs

22 wfs_t *wfs; // (user) wfs_t structs array

23

24 // WFC variables

25 int wfc_count; // (user) number of WFCs

26 wfc_t *wfc; // (user) wfc_t structs array

27

28 // Filterwheel variables

29 int fw_count; // (user) number of fwheels

30 filtwheel_t *filter; // (user) filtwheel_t structs array

31

32 } control_t;

config t

This struct stores things like the IP and port it should be listening on, the files
to log error, info and debug messages to and whether or not to use the syslog
facility. Again, ‘(user)’ prefixes denote fields that need to be filled out by
the user (i.e. programmer), ‘(foam)’ prefixes indicate fields that only FOAM
worries about.

Code snippet D.2: config t data type

1 typedef struct { // config_t

2 char *listenip; // (user) IP to listen on

3 int listenport; // (user) port to listen on

4

5 char *infofile; // (user) info logfile

6 FILE *infofd; // (foam) associated FP

7 char *errfile; // (user) error logfile

8 FILE *errfd; // (foam) associated FP

9 char *debugfile; // (user) debug logfile

10 FILE *debugfd; // (foam) associated FP

11

12 bool use_syslog; // (user) use syslog?

13 char *syslog_prepend; // (user) syslogs prefix

14 bool use_stdout; // (user) use stdout?

15 level_t loglevel; // (user) loglevel

16

17 pthread_t threads[MAX_THREADS]; // (foam) thread ids array

18 int nthreads; // (foam) number of threads

19 } config_t;

60

D.1 FOAM FRAMEWORK

D.1.2 SUBROUTINES

The following hooks are available using the FOAM framework, and must be
defined in the prime module. The prototypes are fixed, however.

• int modInitModule(control t * ptc, config t * cs config)

modInitModule() is run at the beginning of FOAM and is one of the
cornerstones of the modular design. This hook provides a standardised
means to initialise the prime module before anything has been done, like
allocate memory, read in some configuration files, start cameras or any-
thing else.

Returns:
EXIT_SUCCESS or EXIT_FAILURE depending on success or not.

• int modPostInitModule(control t * ptc, config t * cs config)

modPostInitModule() is run just after the framework split into two sep-
arate threads. This routine can be used to initialise things that are not
entirely thread-safe, such as OpenGL.

Returns:
EXIT_SUCCESS or EXIT_FAILURE depending on success or not.

• void modStopModule(control t * ptc)

modStopModule() is run at the end of FOAM and can be used to wrap up
things related to the module, like stopping cameras, setting filter wheels
back or anything else. If this module fails, FOAM will exit anyway.

• int modMessage(control t * ptc, const client t * client, char *
list[], const int count)

This routine is run if a client sends a message over the socket.

If the networking thread of the control software receives data, it will split
the string received in space-separated words. After that, the routine will
handle some default commands itself, like ‘help’, ‘quit’, ‘shutdown’ and
others (see parseCmd()). If a command is not recognised, it is passed to
this routine, which must then do something, or return 0 to indicate an
unknown command. parseCmd() itself will then warn the user.

Besides parsing commands, this routine must also provide help informa-
tion about which commands are available in the first place. FOAM itself
already provides some help on the basic functions, and after sending this
to the user, modMessage() is called with list[0] == ’help’ such that
this routine can add its own help info.

If a client sends ‘help 〈topic〉’, this is also passed to modMessage(), with
list[0] == ’help’ and list[1] == ’<topic>’. It should then give in-
formation on that topic and return 1, or return 0 if it does not ‘know’ that
topic.

61

D. FOAM SUMMARY

For an example of modMessage(), see foam primemod-dummy.c.

Returns:
EXIT_SUCCESS or EXIT_FAILURE depending on success or not.

• int modCalibrate(control t * ptc)

This routine is run during calibration mode.
Slightly different from open and closed mode is the calibration mode.
This mode does not have a loop which runs forever, but only calls
modCalibrate() once. It is left to the programmer to decide what to do in
this mode. control_t provides a flag (.calmode) to distinguish between
different calibration modes.

Returns:
EXIT_SUCCESS or EXIT_FAILURE depending on success or not.

• int modOpenInit(control t * ptc)

This routine is run once before entering open loop.
modOpenInit() should be provided by a module which does the neces-
sary things just before open loop.

Returns:
EXIT_SUCCESS or EXIT_FAILURE depending on success or not.

• int modOpenLoop(control t * ptc)

This routine is run during open loop.
modOpenLoop() should be provided by a module which does the neces-
sary things in open loop.

Returns:
EXIT_SUCCESS or EXIT_FAILURE depending on success or not.

• int modOpenFinish(control t * ptc)

This routine is run after open loop.
modOpenFinish() can be used to shut down cameras temporarily, i.e. to
stop grabbing frames or something similar.

Returns:
EXIT_SUCCESS or EXIT_FAILURE depending on success or not.

• int modClosedInit(control t * ptc)

This routine is run once before entering closed loop.
modClosedInit() should be provided by a module which does the nec-
essary things just before closed loop.

62

D.2 OPENGL DISPLAY MODULE

Returns:
EXIT_SUCCESS or EXIT_FAILURE depending on success or not.

• int modClosedLoop(control t * ptc)

This routine is run during closed loop.

modClosedLoop() should be provided by a module which does the nec-
essary things in closed loop.

Returns:
EXIT_SUCCESS or EXIT_FAILURE depending on success or not.

• int modClosedFinish(control t * ptc)

This routine is run after closed loop.

modClosedFinish() can be used to shut down cameras temporarily, i.e.
to stop grabbing frames or something similar.

Returns:
EXIT_SUCCESS or EXIT_FAILURE depending on success or not.

D.2 OPENGL DISPLAY MODULE

File: foam modules-dispgl.c

Header: foam modules-dispcommon.h

Data type: mod_display_t

Dependencies: Shack-Hartmann module
Purpose: Provide display routines such that wavefront sensor im-

ages can be displayed, along with some information such
as a subaperture grid, the tracking subapertures in use, the
displacements measured etc.

• int displayInit(mod display t *disp)

• void displaySDLEvents(mod display t *disp)

• int displayDraw(wfs t *wfsinfo, mod display t *disp,
mod sh track t *shtrack)

• void displayBeginDraw(mod display t *disp)

• int displayGSLImg(gsl matrix float *gslimg, mod display t *disp,
int doscale)

• int displayImgByte(uint8 t *img, mod display t *disp,
mod sh track t *shtrack)

• int displayGrid(coord t gridres, mod display t *disp)

63

D. FOAM SUMMARY

• int displaySubaptLabels(mod sh track t *shtrack, mod display t
*disp)

• int displaySubapts(mod sh track t *shtrack, mod display t *disp)

• int displayVecs(mod sh track t *shtrack, mod display t *disp)

• void displayFinishDraw(mod display t *disp)

• int displayFinish(mod display t *disp)

D.3 OKOTECH DEFORMABLE MIRROR MODULE

File: foam modules-okodm.c

Header: foam modules-okodm.h

Data type: mod_okodm_t

Dependencies: none
Purpose: Provide an interface from the internal FOAM control sig-

nals to the 37 channel Okotech mirror controlled through
a PCI-board.

• int okoInitDM(mod okodm t *dm)

• int okoSetDM(gsl vector float *ctrl, mod okodm t *dm)

• int okoSetAllDM(mod okodm t *dm, int volt)

• int okoRstDM(mod okodm t *dm)

• int okoCloseDM(mod okodm t *dm)

D.4 SHACK-HARTMANN MODULE

File: foam modules-sh.c

Header: foam modules-sh.h

Data type: mod_sh_track_t

Dependencies: none
Purpose: Provide routines to perform analysis on Shack-Hartmann

wavefront sensor output, such as tracking the centre of
gravity displacement for subapertures, and calculating
control signal output given these displacements.

• int shInit(wfs t *wfsinfo, mod sh track t *shtrack)

• int shSelSubapts(void *image, foam datat t data, mod sh align t
align, mod sh track t *shtrack, wfs t *shwfs)

• int shCogTrack(void *image, foam datat t data, mod sh align t
align, mod sh track t *shtrack, float *aver, float
*max)

64

D.5 IMAGE I/O MODULE

• int shCalcCtrl(control t *ptc, mod sh track t *shtrack, const int
wfs, int nmodes)

D.5 IMAGE I/O MODULE

File: foam modules-img.c

Header: foam modules-img.h

Data type: mod_imgbuf_t

Dependencies: none
Purpose: Provide routines to read and write image files stored on

disk. Can for example be used to read simulated wave-
front images and actuator patterns, or can be used to write
the wavefront sensor output to disk.

• int imgInitBuf(mod imgbuf t *buf)

• int imgSaveToBuf(mod imgbuf t *buf, void *img, foam datat t
datatype, coord t res)

• int imgDumpBuf(mod imgbuf t *buf, control t *ptc)

• void imgFreeBuf(mod imgbuf t *buf)

• void imgGetStats(void *img, foam datat t data, coord t *size, int
pixels, float *stats)

• int imgReadIMGArrByte(char *fname, uint8 t **img, coord t
*outres)

• int imgReadIMGSurf(char *fname, SDL Surface **surf)

• int imgWritePGMArr(char *fname, void *img, foam datat t
datatype, coord t res, int maxval, int
pgmtype)

• int imgWritePGMSurf(char *fname, SDL Surface *img, int maxval,
int pgmtype)

D.6 DATA LOGGING MODULE

File: foam modules-log.c

Header: foam modules-log.h

Data type: mod_log_t

Dependencies: none
Purpose: Used to log data to disk, which can afterwards be analyze.

• int logInit(mod log t *log, control t *ptc)

• void logGSLVecFloat(mod log t *log, gsl vector float *vec, int
nelem, char *prep, char *app)

65

D. FOAM SUMMARY

• void logVecFloat(mod log t *log, float *vec, int nelem, char
*prep, char *app)

• void logMsg(mod log t *log, char *prep, char *msg, char *app)

• void logPTC(mod log t *log, control t *ptc, char *prep)

• int logReset(mod log t *log, control t *ptc)

• int logFinish(mod log t *log)

D.7 SIMULATION MODULE

File: foam modules-sim.c

Header: foam modules-sim.h

Data type: mod_sim_t

Dependencies: Calibration module, Shack-Hartmann module, image I/O
module

Purpose: Can be used to perform dynamical adaptive optics sys-
tems simulations, starting with a simulated perturbed
wavefront and consecutively simulating the telescope, the
wavefront correctors, and the Shack-Hartmann wavefront
sensor.

• int simInit(mod sim t *simparams)

• int simFlat(mod sim t *simparams, int intensity)

• int simNoise(mod sim t *simparams, int var)

• int simWind(mod sim t *simparams)

• int simAtm(mod sim t *simparams)

• int simWFC(wfc t *wfc, mod sim t *simparams)

• int simTT(mod sim t *simparams, gsl vector float *ctrl, int mode)

• int simDM(mod sim t *simparams, gsl vector float *ctrl, int
nact, int mode, int niter)

• int simWFCError(mod sim t *simparams, wfc t *wfc, int method, int
period)

• int simTel(mod sim t *simparams)

• int simSHWFS(mod sim t *simparams, mod sh track t *shwfs)

66

D.8 DAQBOARD/2000 MODULE

D.8 DAQBOARD/2000 MODULE

File: foam modules-daq2k.c

Header: foam modules-daq2k.h

Data type: mod_daq2k_board_t

Dependencies: none
Purpose: A module that provides routines to interface with the

IOtech DaqBoard/2000 PCI-board, which provides some
high-speed digital and analogue I/O ports.

• int daq2kInit(mod daq2k board t *board)

• void daq2kSetDACs(mod daq2k board t *board, int val)

• void daq2kSetDAC(mod daq2k board t *board, int chan, int val)

• int daq2kSetP2(mod daq2k board t *board, int port, int bitpat)

• void daq2kClose(mod daq2k board t *board)

D.9 ITIFG MODULE

File: foam modules-itifg.c

Header: foam modules-itifg.h

Data type: mod_itifg_cam_t, mod_itifg_buf_t
Dependencies: none
Purpose: A module interfacing with the ITI frame grabber driver

which in turn is used to talk to frame grabber boards.

• int itifgInitBoard(mod itifg cam t *cam)

• int itifgInitBufs(mod itifg buf t *buf, mod itifg cam t *cam)

• int itifgInitGrab(mod itifg cam t *cam)

• int itifgGetImg(mod itifg cam t *cam, mod itifg buf t *buf, struct
timeval *timeout, void **newdata)

• int itifgStopGrab(mod itifg cam t *cam)

• int itifgStopBufs(mod itifg buf t *buf, mod itifg cam t *cam)

• int itifgStopBoard(mod itifg cam t *cam)

67

D. FOAM SUMMARY

D.10 CALIBRATION MODULE

File: foam modules-calib.c

Header: foam modules-calib.h

Data type: none
Dependencies: Shack-Hartmann module
Purpose: Provides some calibration routines for Shack-Hartmann

wavefront sensors.

• int calibPinhole(control t *ptc, int wfs, mod sh track t *shtrack)

• int calibSVDGSL(control t *ptc, int wfs, mod sh track t *shtrack)

• int calibWFC(control t *ptc, int wfs, mod sh track t *shtrack)

68

Bibliography

Ammons, S. M. and Keller, C. U. (2002). Preliminary tests of a low-cost solar infrared
adaptive optics system. In Bulletin of the American Astronomical Society, volume 34 of
Bulletin of the American Astronomical Society, pages 736–+.

Dayton, D., Pierson, B., Spielbusch, B., and Gonglewski, J. (1992). Atmospheric struc-
ture function measurements with a Shack-Hartmann wave-front sensor. Optics Let-
ters, 17, 1737–1739.

Fried, D. L. (1965). Statistics of a Geometric Representation of Wavefront Distortion.
Journal of the Optical Society of America (1917-1983), 55, 1427–1435.

Gilmozzi, R. and Spyromilio, J. (2007). The European Extremely Large Telescope (E-
ELT). The Messenger, 127, 11–+.

Keller, C. U., Rimmele, T. R., Hill, F., Keil, S. L., Oschmann, J. M., and the ATST Team
(2002). The Advanced Technology Solar Telescope. Astronomische Nachrichten, 323,
294–298.

Keller, C. U., Plymate, C., and Ammons, S. M. (2003). Low-cost solar adaptive optics
in the infrared. In S. L. Keil and S. V. Avakyan, editors, Innovative Telescopes and
Instrumentation for Solar Astrophysics., volume 4853 of Proceedings of the SPIE, pages
351–359.

Kolmogorov, A. (1941). The Local Structure of Turbulence in Incompressible Viscous
Fluid for Very Large Reynolds’ Numbers. Akademiia Nauk SSSR Doklady, 30, 301–305.

Labeyrie, A. (1970). Attainment of Diffraction Limited Resolution in Large Telescopes
by Fourier Analysing Speckle Patterns in Star Images. Astronomy and Astrophysics, 6,
85–+.

Lane, R. G. and Tallon, M. (1992). Wave-front reconstruction using a Shack-Hartmann
sensor. Applied Optics, 31, 6902–6908.

Noll, R. J. (1976). Zernike polynomials and atmospheric turbulence. Journal of the Optical
Society of America (1917-1983), 66, 207–211.

Pierce, A. (1964). The mcmath solar telescope of the kitt peak national observatory.
Applied Optics, 3(12), 1337–1346.

Potter, A. E. and Morgan, T. H. (1990). Evidence for magnetospheric effects on the
sodium atmosphere of Mercury. Science, 248, 835–838.

Potter, A. E. and Morgan, T. H. (1997). Sodium and potassium atmospheres of Mercury.
Planetary Space Science, 45, 95–100.

69

BIBLIOGRAPHY

Potter, A. E., Plymate, C., Keller, C., Killen, R. M., and Morgan, T. H. (2006a). Mapping
sodium distribution in the exosphere of Mercury with tip-tilt image stabilization. Ad-
vances in Space Research, 38, 599–603.

Potter, A. E., Killen, R. M., and Sarantos, M. (2006b). Spatial distribution of sodium on
Mercury. Icarus, 181, 1–12.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical
recipes in C. The art of scientific computing. Cambridge: University Press, 2nd ed.

Roddier, F. (2004). Adaptive Optics in Astronomy. Edited by François Roddier, Cambridge
University Press, pp. 419, ISBN 0521612144.

Tyson, R. K. and Frazier, B. W. (2004). Field Guide to Adaptive Optics. SPIE Press,
pp. 82. ISBN 9780819453198.

70

	Introduction
	Seeing
	Correcting seeing
	Need for FOAM

	Quantifying seeing
	Kolmogorov turbulence
	Wavefront distortion
	Wavefront decomposition
	Effect of seeing on image quality

	Adaptive optics
	Wavefront sensors
	Wavefront correctors
	System control
	System requirements
	Example: Mercury

	FOAM design
	Requirements
	System components overview
	Architecture

	FOAM implementation
	Simulations
	Availability
	Future extensions
	Conclusions

	Applications
	FOAM at the McMath-Pierce telescope

	Nederlandse samenvatting
	Atmosferische storingen
	De storing corrigeren
	Het controlesysteem
	FOAM

	Brief FOAM manual
	Prerequisites
	Obtaining FOAM
	Installation
	Running FOAM

	FOAM skeleton
	FOAM summary
	FOAM framework
	OpenGL display module
	Okotech deformable mirror module
	Shack-Hartmann module
	Image I/O module
	Data logging module
	Simulation module
	DaqBoard/2000 module
	ITIFG module
	Calibration module

